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that can explain how complex features such as line segments and angles are

synthesized from simple features such as on-center off-surround cells (Hubel &
Wiesel 1962).

Working downward, some researchers have suggested that the proper level for
understanding lasting changes with learning is at the neuronal organelle, such
as the synapse (Hebb 1949) and the dendritic spine (Rall & Rinzel 1973; Lynch
1986 ). Kandel and Schwartz (1982) designate the best level +to be the
biochemical operations in the synapse, particularly +the modifications of
calcium flux and the effects on protein assembly and deployment in the synaptic
complex. Kandel proposes to extend the search into the nucleus of the neuron
on the premiss that any permanent change in the protein-making capability of a
neuron that subserves learning may entail a change in the genome, or at least a
modification of the RNA in the Nissl substance. This brings us full circle
back to the hypothesis of Hyden (1960) that fostered a cottage industry of the
sixties 1in which high school students across the country sought to enrich the
lives of flatworms by feeding them the RNA of their educated brethren.

Working in the opposite direction, researchers have postulated that the changes
with learning, although constituted by or based on cellular and molecular
modifications, are spatially widely distributed and must be understood first at
the Jlevel of neuronal networks (Amari 1983: Grossberg 1981: Herault & Jutten
1988; Hinton 1985; Hopfield & Tank 1986; Rumelhart et al. 1986 ). For example,
if in accordance with the Hebb postulate there 1is strengthening of some
synapses and decay of others in an interactive population of cells leading +to
the formation of a nerve cell assembly (NCA), then in some cells there must be
stronger synaptic actions. These will require more energy in the form of ATP
so that more mitochondria must be made with the result that all mitochondrial
proteins will be increased in the modified tissue. If the numbers of synapses
are 1Iincreased by cloning, or if their size or the length of spines is
increased, then more membranal molecules are required. The metabolic demands
may increase the activities of glial cells which have more worlk to do keeping
the neural electrolytes in balance. These changes have led some to posit that
learning and memory take place at the metabolic level among huge masses of
neurons 1in the brain (Thatcher & John 1977). We suggest, however, that
although these and many other changes support learning, they do not explain it
or constitute the essence of it.

The 1issue 1is further complicated by the circumstances by which 1learning 1is
induced in normal subjects. Some form of repeated stimulation is required that
in itself imposes metabolic and electrolytic demands on neurons and glia.
Concomitantly, there are contextual and background processes no less well
defined at present than those subserving associative learning. The
unconditional stimulus tha* serves for reinforcement must have widespread
effects of diverse Lkinds. Typically, Dboth conditioned and wunconditioned
stimuli are made rather strong so as to attract the attention of a subject;
thus, they impose demands for range compression and normalization, such as
occurs by light adaptation in the visual system and logarithmic conversion of
stimulus intensity in the olfactory system (Freeman 1975). The fact that these
are journeyman and janitorial processes of a routine and nonproblematic kind
does not sweep them out of the way when researchers are probing for the
structural and chemical concomitants of learning. More likely these are the
first to be stumbled over.

How, then, can we hope to ferret out and critically identify the neural changes
with learning that signify and lable the processes of associative memory? We
propose that the crucial step consists in observing and measuring the neural
activity patterns of sensory systems before and after a subject has learned to
discriminate two or more sensory stimuli, to identify the precise nature of the
differences 1in activity patterns that serve to distinguish and properly
classify the neural events in respect to the discriminanda, and to construct a
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dynamic model that suffices to replicate the observed pattern differences.
This dynamic model isg crucial, 1n our opinion, because it serves to specify the
type of synapse that undergoes modification with learning, where it is located,
when it changes, and the manner in which the Synaptic change subserves +the
global network change leading to altered goal-directed behavior, particularly
how each neural activity pattern, +that supports the appropriate form of

behavior, is selected and brought to fruition in the presence of the
discriminated stimulus.

We Dbelieve that the neural network approach to these issues 1isg valuable,
incorporating as it does earlier insights on Synaptic changes associated with
learning and memory, but it is still an open question as to how the mechanisms
of synaptic change and the formation of neural networks function to produce
learned behaviors. Is the formation of patterned activity in a network via the
underlying processes of synaptic change sufficient to exXplain learning and to
produce a memory and/or memory recall in a system? Our data suggests that more
is involved. In what follows we describe the neural dynamics responsible for
learning and memory, some respects in which our model differs from recent

"neural net" models, and some Implications of our findings for further
research.
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FIGURE 1

EEG waves are shown from =a selected channel in the olfactory bulb of a waking
rabbit (top trace) and from the pPrepyriform cortex to which the clfactory bulb
transmits its output. Receptors in the nose sending their axons to the bulb
are activated by air inflow during each inhalation (upward peaks of middle
trace). The surge of input on many axons causes this "respiratory wave" that
manifests excitation of the bulb. Near the crest of excitation the bulb breaks
into its own oscillation giving rise to a burst riding on the respiratory wave.
Both the wave and the burst are transmitted to the prepyriform cortex where
they are mixed with other activity that is transmitted to other parts of the
brain. The Dburst has the same frequency everywhere 1in the bulb; the
modulation of 1its amplitude in the spatial dimensions of the bulb provides =a
pattern that contains and transmits the odor-specific information suhserving
discriminative responding and the appropriate behavior, in this case a sniff
that 1s induced by a warning odor paired with shock in a classical aversive
conditioning paradigm. (From Freeman & Schneider 1982)
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2. NEURAL DYNAMICS MANIFEST IN EEGS

The model of learning and memory presented here concerns paleocortical
dynamics; more specifically it concerns preattentive sensory processing in the
olfactory bulb. It 1s ©based on eéxperiments in which thirsty rabbits were
conditioned to liek (CR+) in response to an odorant (CS+) followed after 2 s by
delivery of water (UCS), and Just to sniff (CR-) in response to an unreinforced
odorant (CS-). The model 1is derived from studies of changes in the waveform of
evoked potentials 1p the olfactory System of rabbitg recorded with a
chronically implanted 8 x 8 array of electrodesg fsPacing: 0.5 mm) covering
approximately 20% of the surface of the olfactory bulb, and on replication of
these waveforms by nonlinear differential equations simulating the dynamics of
the olfactory bulb, anterior olfactory nucleus and prepyriform cortex. The
typical pattern of bulbar electroencephalogram (EEG) trace (Figure 1) was 2
slow wave common to all 64 channels on the crest of ga respiratory wave with a
burst of oscillation in the gamma range (35-9¢ Hz ). Spatial analysis of the
EEG revealed +that odor specific information exists in spatial patterns of
amplitude of this 0scillatory burst.
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FIGURE 2

Each burst has the same wave form (frequency) over the entire bulb or cortex
that differs 1in amplitude from place to place. Hence the odor-specific
information can be exXpressed by the spatial pattern of amplitude. These
examples from a rabbit olfactory bulb show the patterns by means of contour
plots from an array of 64 EEG bursts recorded from an 8 x 8 array at different
stages of conditioning. At top left is the pattern first seen after recovery
from surgery. Next is the pattern after familiarization with the recording and
test apparatus. Then follows the pattern associated with the first test odor
(sawdust), followed by two other odorants, each Séquentially paired with shock.
The last (lower left) frame shows that return to the original odorant (sawdust)
leads to a new pattern and not recurrence of the original one (upper right).
This memory is not Cied to our catalog of chemicals. It 1s an on-going
experiential process, fully assoclational, that has a history +that cannot
exactly repeat itself. (From Freeman & Schneider 1982)
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Analysis of the EEG traces revealed that in the background state (before
conditioning) every trace had the same temporal waveform, and that the
amplitude differed between channels to form a relatively constant spatial
pattern that was easlily identified with a particular animal. The patterned
activity of this background state remained constant until odorant conditioning
was undertaken (Figure 2). New patterns emerged only with reinforced odorants
and remained stable within and across sessions provided S-R contingencies were
not changed. Multiple patterns emerged under discrimination conditioning.
These patterns were glcbally distributed; 1t was not possible to localize the
information 1n the stable spatial patterns that served +to classify events
correctly to a particular subset of channels. The task of modeling was to
produce a simulation of the robust background state and the emergence of

globally distributed, odor specific spatial patterns within constraints set by
known characteristics of olfactory functioning.

How does learning occur in the olfactory bulb? The model based on these
studies can be Dbriefly characterized as follows: Excitatory neurons,
synaptically 1linked by bidirectional synapses, are co-activated pairwise by a
CS+ strengthening their Joint synapses in accordance with Hebb’s rule (1949).
A nerve cell assembly (NCA) is thus created by strengthened excitatory synapses
comprising perhaps 1-5% of the total in the olfactory bulb. Thereafter,
excitation of any portion of the NCA by receptors sensitive to a particular
odor tends to activate the whole assembly. Formation of the NCA under
conditioning 1is +the essential part of the lasting physiological changes
associated with learning in the olfactory system, but more is involved in odor
recognition and in the process ol retrieval or memory.

Physiological studies reveal that during inhalation input to the bulb augments
exponentially the strength of interaction of the entire bulb, not just a
selected subset of neurons. The model indicates that during late inhalation,
bulbar neurons are pushed far from their initial low energy state resulting in
a state change or bifurcation. It 1s hypothesized that the NCA operates at the
moment of choice when the surge of receptor input strongly forces the bulb away
from 1its rest state to a new activity pattern. The hypothesized role of the
synaptic changes leading to the formation of the NCA is threefold: (1) to
amplify and stereotype the small input received on any given inhalation, (2) to
produce a locally disseminated but low density activity pattern from its
interaction with the stimulus, and (3) to provide the crucial mechanism for
mediating the emergence of the globally distributed odor-specific activity
pattern at the time of state change. The NCA 1s thought to determine the
"basin of attraction" for the system leading to the emergence of a globally
distributed, odor specific activity pattern that 1s mathematically expressed as
a limit cycle attractor. It is only with this state change that the entire
olfactory bulb, rather than the limited number of nerve cells comprising the
NCA, 1is engaged by a process of global integration to produce a stereotypical
activity pattern that is mediated by the NCA but goes far beyond 1it. It 1is
hypothesized that this globally distributed, stereotypical pattern constitutes
odor recognition and memory for the rest of the system; this 1s the pattern
that is made available to the rest of the brain, and that 1s behaviorally

relevant for the kind of correlations that are usually assocliated with learning
and memory .

EEG data and the resulting model reveal that the olfactory bulb operates in
number of states. During late exhalation and early inhalation 1intrinsic
interaction strength is low, and the activity of afferent neurons is imposed on
bulbar neurons that can accept information and maintain it by local firing.
The model indicates that this background state 1s a low level chaotic state in
which is embedded the locally disseminated activity pattern of the NCA. On
bifurcation the bulb converts to a transmitting mode 1in which internal
interaction is high and bulbar neurons no longer respond to receptor input. In
this state, information carried by each neuron is disseminated over the entire
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bulb, is integrated by every neuron in the bulb, and is sent out of the bulb to
the cortex which, 1n turn, sends feedback to the bulb. Upon exhalation the
bulb returns to its low level chaotic state.

We believe that our research and the resulting model are significant for
researchers interested in investigating the neurophysiological basis of

learning and memory for at least two reasons. First and foremost, the model
suggests 1n outline the way in which synaptic change and the NCA fit into the
larger framework of memory formation and recall. We hypothesize that the

formation of a NCA and its resulting locally distributed activity pattern is
necessary, but not sufficient, to explain memory, and that research focused
exclusively on this process will miss the role played by the globally
distributed, self-organized, internally generated activity pattern that in the
olfactory system constitutes memory but that does not itself require further
synaptic alteration. Second, this "bigger picture" allows us to distinguish
from the point of view of system dynamics those processes primarily concerned
with learning from those that subserve memory. We hypothesize that the
synaptic changes occurring under reinforcement leading to the formation of a
NCA that is locally disseminated, are the essential long-term material changes
for learning in the olfactory system, while globally distributed activity

patterns taking place across the entire bulb are the hallmark of memory
formation and the recall process.

3. FUNCTIONAL ARCHITECTURE AND NEURAL NET MODELS

The model of sensory functioning in the olfactory system as a distributed,
self-organizing process that 1s mathematically expressible in terms of
nonlinear dynamics resembles some of the neural net models developed in recent
connectionist research, namely that class of connectionist systens
characterized by self-directed dynamical models (Amari 1983; Freeman 1987;
Grossberg 1981; Hopfield & Tank 1986: Kohonen 1984). In such models learning
is a distributed process that takes place without a +teacher by gradually
varying connection strengths among units comprising the network. Learning is,
thus, 1in the connections and knowledge or memory is in the capacity of the
network to arrive at similar input-output pairings. But 1in such systems
learning 1is not only globally distributed, it is self-organized. Unlike so-
called PDP systems (Rumelhart et al. 1986) that rely on feed-forward
connectivity and back propagation for error correction and that have their
"goals" externally imposed by the system’s operator in the form of a "teacher"
or set of correct answers with reference to which the output of the system is
corrected wvia error correction, self-organizing systems de not wuse 1internal
representations of any sort to generate a more ordered state leading to
reliable forms of interactlon with the environment from less ordered initial
conditions. Thus, these models differ significantly from models based on
conventional computer technology: rot only do self-organized connectionist
systems use distributed, highly parallel processing, they do not compute with
symbolic tokens, they do not use "teachers" to specify the desired goal, and
they do not calculate according to externally specified ad hoc rules.

Even with self-organizing systems, however, there is not a complete isomorphism
between actual neural dynamics and the so-called neural npet models of
connectionist research. Some of the differences have been reviewed in a recent
paper (Skarda & Freeman 1987), but there are several features of the model of
olfactory dynamics that are of special interest in the present context.

(1) Neural net models of learning and memory focus exclusively on the
mechanisms of synaptic change to the exclusion of other possible learning
mechanisms. In this respect they reflect important insights 1into neuronal
functioning gained from single unit research. However, while the brain clearly
uses the mechanisms of synaptic change (both transient and long term anatomical



EEG research of neural dynamics 205

ones), 1t seems safe to assume that a system that is extremely economical in
many respects would not overuse this highly valuable resource. One suggestion
1s that future neural net modelers might be wise to try to use changes based on
the Hebb rule sparingly, combining it with other types of learning mechanisms.
In the olfactory model discussed above synaptic change is only part of
the story, although admittedly an essential part. Learning results in synaptic
changes that lead to the formation of a NCA. But it 1s the resulting patterned
activity of the NCA rather than further synaptic changes that mediates the
recall of a global, self-organized state in the whole bulb, a state that does
not 1itself require further Hebb-type synaptic changes. Finally, this global
odor-specific activity pattern is hypothesized to play a role 1in determining
activity at later stagés of information processing (Freeman & Skarda 1985).

(2) This raises a related issue, the role of hierarchically arranged
neural processing. Neural net models of the Hopfield and Hinton varieties tend
to be ‘simple’ in the sense that they involve no real architectural complexity.
Recently, however, connectionist modelers have begun to think in terms of
creating architecture that will enable their models to handle problems that
traditional computational systems were able to handle, e.g., inference and
sequential processing, but that neural net models have not yet tackled. The
neural model based on EEG data encourages this trend and indicates that in the
olfactory system a hierarchically arranged, self-organized neural dynamics is
responsible for odor recognition.

In the olfactory system architecture is postulated to play a crucial
role both within the olfactory bulb itself and among 1Individual subsystems.
While the limbic system as a whole may be viewed as a hierarchy of interacting,
self-organized states, within the olfactory bulb itself +there exists a
hierarchy of self-organized stable states ranging from deep anesthesia to
seizure states (Figure 3). Depending on various neural conditions, and in the
model on parameter changes, the system behaves differently even though the
basic neural dynamics (and equations) are the same in all states. In the model
the (chaotic) background state can gilve way to a low energy state that can be
mathematically represented as a point attractor for states of deep anesthesia
or death, or to a limit cycle attractor for each learned odor, or to a high
energy chaotic attractor in the seizure state (Figure 4). It is postulated
that in a motivated animal all of the learned tendencies to produce patterned
behavior associated with particular odors would be avallable with each
inhalation thanks to the chaotic nature of the background state that gives
access to the entire state space in a controlled manner, and with inhalation a
selection is made based on activity in a NCA or its sabsence. The availability
of these odor specific patterns (attractors) vanishes with exhalation and the
system 1is freed +to learn a new odor or to recognize one that is already
learned.

We have postulated that segregation into a hierarchy may be necessary
for several reasons (Freeman & Skarda 1985 ). Included here is evidence from
anatomical studies on patterns of interaction and interconnection in the limbic
system that reveal that successive levels of organization and integration are
involved 1in the formation and operation of this system. In additien, the
orderly sequence of transitions between stable states that we have observed
requires that the details of dynamic activity in each subsystem or part be
collapsed into a small number of variables and parameters, such that a state
variable at a higher level can serve as a control parameter at lower levels.

(3) There is a final difference between current neural net models and
neural dynamics 1in the olfactory system worth noting in the present context.
Most neural net models are not ‘"selective", 1i.e., they process whatever
information 1is received by receptor level neurons. When presented with a
pattern neural net models begin to process the resulting receptor level
pattern. This is not the case in the olfactory system. In the bulb, receptor
level activity only 1leads to the formation of a NCA under reinforcement
(Freeman 1981). In unmotivated animals receptor level activity still occurs,
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distributed patterned activity €merges that signals odor recognition and recall
to the rest of the brain. This difference Suggests that actual neural dynamics
dre not reactive, like connectionist models. e Suggest that they be viewed as
‘factive’, in +the sense that they incorporate an internal neural process that
determines whether receptor level activity will have any effect on the rest of
the system, Learning, on thisg model, is not simply reacting to receptor Input

that triggers changes in internal neural dynamics, it 1{g selective or
discriminative from the outset.

4. IMPLICATIONS FOR LEARNING AND MEMORY RESEARCH

In the olfactory system, ag the model Suggests, information Processing involves
single units, cell assemblies, and mass action among large populations located
In regions or neural subsystems. At the receptor level single unit activity
responding selectively to odorants Plays an important role in €stablishing
mutual excitatory activity among pairs of neurons in the bulb leading to the
formation of the NCA; the formation of the the NCA, 1in turn, ig the essentiagl
Physiological correlate of learning involving locally distributed sSynaptic
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FIGURE 3

Four EEG traces are shown from a representative channel of an array in a rat
that serve +to ldentify four behavioral states and the accompanying dynamic
states of the olfactory system. The lowest trace is from a state of deep
anesthesia induced by a surgical dose of barbiturate. The next is from a
waking animal that ig motionless and unmotivated. This is a gtate of low level
chaos, distinct from the equilibruim or unchanging state under deep anesthesia.
The third state is the "wave and burst" pPattern shown above the concomitant
record of respiration. The top trace shows a seizure state in which norma.
behavior 1is 1in abeyance, the animal goes into a trance, and g splke train
occurs a 3/second. (From Freeman 1987)
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The mathematical model that allows us to simulate the EEG patterns shown in
Figure 3 suggests that a hierarchical set of states exists for the olfactory
bulb, anterior nucleus and prepyriform cortex, ranging from equilibrium at the
lowest energy state up through low level chaos by the so-called Ruelle-Takens

route. Under motivational activaticn the system goes to a higher energy state
of chaos, from which it cen be forced toc bifurcate into one of a set of 1limit
cycle attractors that have been formed by discriminative conditioning. These

attractors are latent and come to exist only with inhalation; they vanish upon
exhalation. With yet further energization, provided by 1intense electirical

stimulation, the system enters a seizure state that is also chaotic. (From
Freeman 1987)

changes and ultimately global patterned activity; finally, discriminatory
behavior and memory for a particular odor depend upon the existence of
patterned output from the olfactory bulb which is the product of globally
distributed, self-organized behavior among all the neurons in the bulb.

This implies that as far as experimental approaches are concerned various
techniques will be required to understand the complete story of the
neurophysiological baslis of learning and memory. For example, study of single
unit properties alone cannot address the coordinated and distributed changes in
large populations of neurons or in the NCAs that are hypothesized to underlie
memory processes. On the other hand, EEG studies cannot describe the changes
leading te the formation of a NCA. We believe 1t 1s essential for researchers
in the field to recognize the level at which their investigations are pitched

and to understand how the phenomena they study fit inte the "bigger picture" of
neural processing underlying learning and memory.

We are convinced that having a "big picture" of the neural dynamics responsible
for learning and memory 1is essential for researchers interested 1in answering
the crucial question as to where to look for the information gained when an
animal learns or remembers something. We, for example, have found our model of
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olfactory system dynamics useful in rejecting two recent views of the
neurophysiological basis of memory. One says that memory traces are stored in
particular neurons or in neural circuits involving identifiable neurons (Barlow
1972), while the other view claims that each memory involves an enormous system
of cooperating neurons, perhaps as much as one tenth of all of the neurons in
the brain (John et al. 1986). Our experimental data and the resulting model
argue against both views. On the one hand, the model indicates that what is
‘stored” 1n the brain is perhaps best understood as a tendency to engage In a
particular form of patterned, self-organized activity, and that this involves
neurons locally linked synaptically into NCAs, but also large globally
distributed populations of neurons. Yet our evidence also indicates that the
process of learning and memory in the olfactory bulb 1is not infinitely
distributed, even though i1t may involve metabolic changes throughout the brain.
The model suggests that there 1is a difference between neurons actually involved

in learning and memory preccesses, and a larger population of neurons 1in the
nervous system which receive input from neurons activated when the system
learns or remembers something. This larger population is affected by activity

directly responsible for memory and recall as the consequences  of
discrimination are realized, but the information relevant to the discrimination
is not contained in these widely distributed metabolic changes.

5. CONCLUSIONS

In the olfactory system odor learning and recall involve a hierarchically
arranged set of processes that are 1internally cgenerated and cannot be
understood as simple responses to external stimuli. We say that they are
"self-organized". Our data 1ndicate that 1learning occurs only under
reinforcement 1in motivated animals, and that it involves chemically mediated
synaptic change leading to the formation of a NCA sensitive to a particular
odor (Gray et al. 1986). Once neurons have had their synaptic interconnections
strengthened by this learning process they tend to preferentially excite one
another, such that excitation of a subset of the neurons comprising the NCA
leads to a stereotypical pattern of activity in the whole neural network. Some
of the recent connectionist or neural net models have attempted to describe the
formation of such networks of excitatory neurons (e.g. Hopfield and Tank 1986 )
but not with locally endogenous oscillatory activity. In this respect, actual
neural dynamics differ from current connectionist models.

Evidence from EEG studies of olfactory functicning indicates that odor
recognition involves more +than activity in a NCA. Input to the bulb
secondarily excites all Dbulbar neurons after excitation of +the subset of
neurons Iinveolved 1in the NCA. When a critical threshold is reached a state
change occurs via a self-organized process in which the entire bulb changes to
a globally distributed stereotypical pattern of oscillatory activity. Activity
in the locally distributed NCA mediates the choice of this globally distributed
patterned activity, but further synaptic change is not required once the NCA is
established. We hypothesize that evocation of +this globally distributed,
oscillatory pattern constitutes odor recognition and memory for the system,
since this is the pattern that is made available to the rest of the brain.

Analysis of EEG traces ylelds important insights into neural structure and
function (see also Babloyantz & Destexhe 1987), insights that cannot be
discovered using other methods. In self-organized systems, global dynamics
cannot be explained or predicted from studies of the parts that constitute the
system {(Crutchfield et al., 1987). As a result, single unit studies will not
be able to explain learning and memory in the brain, although they can
investigate the mechanisms involved in synaptic change leading to the formation
of a NCA. We suggest that an adequate explanation of 1learning and memory
awalts cooperative 1involvement of researchers using experimental methods
pitched at a higher or lower level of organization than that of the neuron.
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