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CHRISTINE A. SKARDA

UNDERSTANDING PERCEPTION:
SELF-ORGANIZING NEURAL DYNAMICS

1. Introduction

Perception is mischaracterized when described as a neural reac-
tio to receptor input or to «what is out there». One class of objections
to this stimulusresponse model of physiological functioning appeals
to a nonmaterial element or «ghost» in the machine. This dualistic
view does not make physiological sense and is unnecessary; there is
no need to introduce a nonbiological element to explain perceptual
processing.

Perception is not produced by an internal ghost, but neither is it
adequately characterized by the currently popular alternative to dual-
ism and to stimulus-response theories, representationalism. Accord-
ing to representationalist accounts, perception is a physiological pro-
cess whose goal is to create an internal model or representation of the
environment. I shall argue that once the self-organizing mechanisms
responsible for perceptual experience are understood, representa-
tionalism, too, can be abandoned as a mischarcterization.

Yet a positive characterization of perceptual processing in the
brain requires more than the simple recognition that self-organiza-
tion plays a role. Recent connectionist research demonstrates that
there are a number of ways to incorporate self-organizing dynamics in
an account of perceptual processing. Review of recent data on neural
dynamics shows that brains use self-organization in a way that no cur-
rent connectionist model does, and that there are important implica-
tions here for how we view perception. In what follows I will briefly
review connectionist research and recent findings gathered from ele-
croencephalogram (EEG) research on perceptual processing in the
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olfactory system. My aim is to replace traditional accounts of pet-
ceptual processing with a new picture of perception.

2. How the Brain Perceives

The theory of brain function presented here is based on EEG
studies of preattentive sensory processing in the olfactory bulb. This
data has been discussed elsewhere in detail (Freeman & Skarda
1985), and can be summarized briefly here. The model concerns pale-
ocortical dynamics and is based on experiments in which thirsty rab-
bits were conditioned to lick (Cr +) in response to an odorant (CS +)
followed after 2 seconds by delivery of water (UCS), and just to sniff
(CR-) in response to an unreinforced odorant (CS-). The findings are
derived from the study of changes in the waveform, of evoked poten-
tials recorded using a chronically implanted 8 x 8 array of electrodes
covering approximately 209% of the surface of the olfactory bulb, and
on replication of these waveforms by nonlinear differential equations
simulating the dynamics of the olfactory bulb, anterior olfactory nu-
cleus and prepyriform cortex. It was found that the typical bulbar
EEG trace is a slow wave common to each of the 64 channels on the
crest of a respiratory wave with a burst of oscillation in the gamma
range (3590 Hz).

Analysis revealed that it is possible to correlate the spatial pat-
_ terns of amplitude of this oscillatory burst with specific odors. In the
background state (before conditioning) every trace has the same tem-
poral waveform, but the amplitude differs between channels to form
a relatively constant spatial pattern that can reliably be identified
with a particular animal. The patterned activity of this background
state remains constant until odorant conditioning is undertaken, at
which point new patterns begin to form. These new patterns emerge,
however, only with reinforced odorants and remain stable within and
across sessions only when the reinforcement contingencies are not
changed; the significance of this will become clear below. Under dis-
crimination conditioning multiple patterns emerged. These patterns
were globally distributed, i.e., it was not possible to localize the infor-
mation that served to classify events correctly in the stable spatial pat-
terns to a particular channel or subset of channels. The aim of model-
ing was to simulate the background state and the emergence of global-
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ly distributed, odor specific spatial patterns within constraints set by
anatomical studies and the known characteristics of olfactory func-
tioning.

What does the resulting model have to tell us about perceptual pro-
cessing? Whenever an animal sniffs the process of transduction oc-
curs: molecules of the odorant fall onto the cilia of olfactory receptor
cells and excite a small subset of receptors in the nasal mucosa that
are selectively sensitive to the odorant. These receptor cells send ac-
tion potentials into the olfactory bulb that then excite the large pro-
jection neurons know as mitral cells. This is all that takes place in the
olfactory system of unmotivated subjects. However, when a novel
odorant is presented under reinforcement more takes place. In a series
of sniffs synaptic strengths change in the bulb as the mitral cells, syna-
ptically linked by bidirectional synapses, are co-activated pairwise
by the CS + . This is a general form of the Hebb rule of synaptic lear-
ning (Hebb 1949). When many interconneted neurons within a mass
of neurons fire together in pairs over repeated stimuli, the selectively
co-activated neurons are joined together into a network of streng-
thened connections. This set is called a nerve cell assembly (NCA)
and it is thought to be the basis for perception in the nervous system.

An essential feature of the model is the recognition that the for-
mation of a NCA is not the whole story of perception, not even within
the olfactory bulb (Skarda & Freeman 1988). With input, and under
reinforcement, feedback interaction spreads excitation throughout
the bulb. Other mitral cells that have been excited by background
odorants, although not under reinforcement, excite the bulb further
thereby increasing the sensitivity of bulbar neurons to each other.
When a critical threshold is reached a further step occurs. This is a
state change to a globally distributed pattern of activity in which all
bulbar neurons take part, not just the limited number of neurons for-
ming the NCA. The model postulates that the NCA operates at the
moment of choice when the surge of input to the bulb strongly forces
it away from its rest state to a new activity pattern. The NCA serves
to amplify the small input received on any given inhalation, to produce
a locally distributed low density activity pattern in interaction with
the stimulus, and it provides the mechanism for mediating the emer-
gence of the globally distributed, odor-specific activity pattern at the
point of state change. This state change leads the entire bulb from
apparently random activity to a globally coherent burst of oscillatory
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activity that is passed on to the rest of the brain and that is hypothe-
sized to constitute odor perception and recognition in the bulb.

This entire process is self-organized: with each inhalation after
learning, and in the presence of the reinforced odorant, this more or-
dered global state emerges via an internally generated process from the
less order background state, disappearing with each exhalation. A sepa-
rate spatial pattern of oscillatory behavior forms for each odor given un-
der reinforcement. When the reinforcement contingency is changed in
respect to any one odor or when a new odorant is added to the animal’s
repertoire, all the globally distributed spatial patterns undergo change.
These changes do not occur in the bulb if there is no reinforcement or if
the newly learned stimulus is not olfactory but visual or auditory.

This picture of perceptual processing departs significantly from
two important explanatory tools of modern physiological research.
First, the data and the resulting model indicate that while the activity
of single neurons appears to be largely unpredictable and noisy, net-
works and ultimately global assemblies of neurons cooperate to pro-
duce coherent, distributed patterns of activity that can be reliably cor-
related with particular stimuli. Perception in the olfactory system is

- expressed in the cooperative activity of masses of neurons and not in

the activity of a favored few. This finding represents a break with one
of the foundational concepts of contemporary research on the ner-
vous system, the «neuron doctrine», the central assumption of which
is that perception is caused by «the activity of a rather small number
of neurons selected from a very large population of predominantly
silent cells» (Barlow 1972). Olfactory data, along with recent data on
neural dynamics in the visual cortex (Freeman & van Dijk 1987), con-
tradict the single unit view of perceptual dynamics in the brain.

Second, the data contradict the classical model of physiological
functioning developed to explain reflex behaviors (Sherrington 1906;
Pavlov 1927), and the feedforward models experimentalists have
used to explain how a conditioned stimulus will elicit a conditioned
response. The basic assumption of reflex theories is that all behavior
can be explained as the sum of responses to stimuli, however com-
plex. According to this view, perception is a response, a reaction to
receptor input, it is caused by the stimulus. But this is not an accurate
physiological model of perceptual processing in the bulb. Causal im-
pact of the stimulus on receptor cells is necessary for perceptual pro-
cessing, but it does not constitute or even, as is often supposed, inau-
gurate perception. Perception begins within the organism with inter-
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nally generated neural activity that, by re-afference, lays the ground
for the processing of future receptor input. Evidence for this is based
on the fact that presentation of odorants to the receptor surface in un-
motivated subjects does not lead to any observable changes in the
bulb; no NCA is formed and no global odor-specific activity patterns
form. The brain itself internally initiates activity patterns that deter-
mine which, if any, receptor input will be processed by the brain.
And after receptor activity is initiated, the brain itself produces self-
organized patterns of activity that are not deterministic responses to
stimuli; input de-stabilizes the olfactory bulb in such a way that inter-
nal patterned activity is released or allowed to develop (Freeman
1983). The story of perception cannot be told in terms of feed-for-
ward causation because such a story overlooks the role of internally
generated (self-organized) neural activity.

Perception, on this model, is interaction with the environment
that is initiated by the organism. Olfactory data indicate that neural
ensembles have evolved the capacity to select from the environment
stimuli to which they will react, while neglecting a whole range of oth-
ers. Perception is this process of selective interaction: «it is the organ-
ism itself... which chooses the stimuli in the physical world to which it
will be sensitive» (MerleauPonty 1942). In this respect the neural
system differs from all other physical systems, biological and nonbiolog-
ical, with which we are familiar (Skarda & Freeman 1987). In other self-
organizing physical systems we find the emergence of more ordered
states from less ordered initial conditions, e.g., the formation of drops
of water from a leaky faucet or the development of structure in a fertil-
ized ovum, but only brains select the environment to which they will re-
spond, thus providing the basis for what we term adaptive behavior.

What happens in the brain is about interaction. Olfactory re-
search shows that there is no dependence of patterned activity in the
bulb on odors presented to unmotivated subjects. Further, neither
NCA formation nor globally distributed patterned activity take place
in the absence of receptor activity. The networks and global ensem-
bles that constitute perception in the olfactory system are interactive
phenomena. Patterned activity correlates best with reliable forms of
interaction in a context that is environmentally and behaviorally co-
determined. This is the basic picture of perceptual processing that
emerges from olfactory research.
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3. Connectionist Models of Perception

Connectionist systems also use self-organized dynamics to model
perceptual processing. Such systems can be very generally character-
ized as distributed systems made up of interacting simple elements.
These systems do not use conventional computer programs that ma-
nipulate symbols according to rules. Instead, a perceptual state re-
sults by selectively strengthening and weakening the connection
strengths between units that comprise the network in a highly paral-
lel fashion. Once the network is activated by input to receptor level
units, each unit computes its own level of activity in terms of input
from all other units. The globally distributed patterned activity that
results from these simultaneous, independent, parallel computations
constitutes the state of the system at that moment.

In connectionist systems physical order (e.g., perceptual pro-
cessing) results solely in virtue of the cooperative, internally generat-
ed activity taking place in assemblies of very simple elements. No sin-
gle element in the system controls the others, none of the units repre-
sent or stand for anything, no program-specified rule tells the ele-
ments how to behave, and no symbols or internal representations are
manipulated. These models are, from the biological perspective,
more realistic than previous, symbolbased computational models
and have succeeded at producing whole classes of behavior that elud-
ed models using symbols and rules. Hence the interest they have re-
cently generated is enormous, both in neuroscience and artificial in-
telligence circles.

But it is important for neuroscientists to note that there are re-
spects in which the neural dynamics of perceptual processing differ
from connectionist models. For one thing, connectionist systems still
model perception as a reactive process, albeit a self-organized one;
they encourage us to view network activity as a function of the
causal impact of stimuli on receptor units. Connectionist systems use
self-organized dynamics in the formation of the neural network, but
the process of neural network formation is triggered by receptor in-
put. The data from olfactory functioning indicate that this whole pro-
cess can only take place in virtue of the prior existence of an internal-
ly generated activity state that is overlooked by connectionist systems
and results in a mischaracterization of perceptual processing from the
neurophysiological perspective. (This is not to say that connectionist
research aims or should aim at producing neurophysiologically realistic
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models of preception. The point is simply that neuroscientists and
others interested in understanding how brains work ought to take
such models with a grain of salt.)

Second, connectionist models indicate that the basic mechanism
for perceptual processing is the formation of neural networks. As we
have seen the model based on olfactory research argues that neural
network activity is only part of the story of perception. Neural net
formation and activity in this network constitute an intermediate
stage of self-organization that is sandwitched between two other glob-
ally distributed self-organized processes: (1) an internally generated,
stimulus-independent, prior activity state that sets the stage for pro-
cessing of receptor input, and after receptor activation, (2) the stereo-
typical, odor-specific patterned activity that constitutes odor percep-
tion for the bulb. The formation of the neural net is a crucial step in
perceptual processing, but it is only part of the story (Skarda & Free-
man 1988).

There is a further important difference between the mechanisms
used by the brain for perceptual processing and those used by connec-
tionist systems. This difference is essential for evaluating the claim
that perception consists in the construction and manipulation of in-
ternal representations. The distinction requires that we recognize
that there are at least two classes of models within connectionist re-
search (Freeman & Skarda 1988a).

The first class of models are parallel distributed processing mod-
els or PDP models (Hinton 1985; Rumelhart et al. 1986). Such sys-
tems rely on feedforward connectivity and what is called back propa-
gation for error correction. Most importantly, PDP systems have
their «goals» externally imposed: they require a «teacher» or set of
correct answers to be introduced by the system’s operator, paradig-
matic patterns (predetermined threshold values) against which the
output of the system is corrected via back propagation and error cor-
rection. These mechanisms are important because although the
teacher is not contained in a program, it nonetheless serves the same
function that symbols do in conventional computers. For our pur-
poses this means that perceptual processing in PDP models can be in-
terpreted as a matching process in which a stimulus-evoked activity
pattern is compared and adjusted with reference to an internally
stored paradigm, model, or representation of the object perceived.

A second class of connectionist systems are self-organized dy-
namical (SD) models (Amari 1983; Anderson et al. 1977; Freeman
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1987; Grossberg 1981; Hopfield 1982; Kohonen 1984). Both classes
of connectionist systems use self-organizing dynamics and parallel,
distributed processing, but SD systems replace the back propaga-
tion and error correction of PDP models with dense local feedback.
As a result of this innovation, no teacher is required to predetermine
values the network should achieve; instead, the network organizes it-
self from within to achieve the same ends. In such models the internal
dynamics of the system are more truly described as self-organized and
do not encourage us to look for an internal counterpart of the object
perceived, or to view perception as a matching process. Instead, input
destabilizes the system which responds by internally generating pat-
terned activity via dense local feedback.

The dynamics of this second class of connectionist models, re-
lying as they do on dense local feedback, resemble those used by
brains, thus reinforcing the view that perception is mischaracterized
when descibed as a process using internal representations, or as tem-
plate matching. The nodes in connectionist networks do not repre-
sent anything and in SD connectionist systems no teacher functions
like a representation either. If the brain resembles SD systems, and
the evidence indicates that it does (Skarda & Freeman 1987), then it
seems uncompelling to accept the representationist interpretation.

But there are further grounds to reject representationalism. The
position as it is usually stated holds that the goal of perceptual pro-
cessing is the creation of an internal model of an object and its fea-
tures. Given this we might expect that simple presentation of that ob-
ject would lead to the formation of stimulus-specific activity patterns
in the brain. But this does not happen when an animal perceives. As
previously discussed, presentation of odorants to an unmotivated ani-
mal has no effect, i.e., no NCA forms and no odor-specific activity
patterns are generated. It seems reasonable to conclude that not only
is perception not a reaction to an object, it isn’t just about objects ei-
ther; rather, perception is about objects in interaction with brains
that first internally generate an activity state that permits receptor
activity to «take hold». This conclusion is supported by the further
finding that the patterns that do form in motivated subjects and that
we can correlate with specific odors are dependent on behavioral re-
sponse as well as context. If we change the reinforcement contingen-
cy or introduce new odors to the repertoire all of the previously
recorded activity patterns undergo change. If these patterns were
representations of the stimulus and its features we would not expect
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such changes to occur on presentation of one and the same odorant.
But do these findings simply force us to elaborate our definition of
«object», so that by it we mean past experiences and context as well as
the object perceived? I do not think so.

What happens in the brain can be explained without recourse to
representations. Motivation leads to the creation of a self-organized
internal state that destabilizes the system in such a way that it be-
comes ready to respond to a particular class of stimulus input in a sen-
sory modality (Skarda & Freeman 1987). This class of stimuli may or
may not have been experienced previously and may be quite general,
but once it is received it, in turn, sets up conditions such that the sys-
tem will generate a new form of interactive behavior to cope with the
constraints imposed by new circumstances and previous experiences
(Skarda 1986). Perception is an interactive process of destabilization
and re-stabilization via self-organized dynamics. Each state change re-
quires a qualitative (parametric) change in the system, and not mere-
ly a change in its input.

There is nothing intrisically representational about this process,
at least not until the observer enters the picture. The experimenter’s
viewpoint is the factor that requires that conclusions be drawn about
what the observed activity patterns represent to the subject. Perhaps
representation-based accounts of perception have simply incorporat-
ed this external viewpoint in their model of perceptual processing.
This is both unnecessary, as evidenced by self-organized dynamical
connectionist systems and brain dynamics, and misleading in our at-
tempts to understand perception (Freeman and Skarda 1988b). It is
misleading because instead of looking at neural dynamics in its own
right, we focus on, e.g., pattern invariance or «feature detectors». Ol-
factory research gives us no evidence that internal representations ex-
ist. But even if internal representatives of the environment were
found in the brain, we would be no closer to understanding brain func-
tion. We would still not know how the patterns were generated from
less ordered initial conditions, their effects on neurons to which they
transmit, the principles of neural functioning they embody or the
kinds of structural changes involved. In the end, representational-
ism gives researchers the illusion of having discovered something
about the brain because something is known about the objects which it
claims are represented inside. This illusion impedes, it does not fos-
ter, advances toward understanding brain function.
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4 Conclusions

Until recently, it was fashionable to claim that the study of cogni-
tion had nothing to learn from neuroscience. From our vantage point
today, with the advent of connectionism and renewed interest in neu-
ral networks, such a view seems misguided and naive. Proponents of
the view were miserably uninformed about neuroscience: they mis-
represented the scope and character of data, and had little idea there-
fore of the range of questions upon which the data could be brought to
bear (Churchland 1986; Skarda 1986).

But it is one thing to argue that neuroscience is relevant, and an-
other to show how its findings can be applied. Many cognitive theo-
rists today are convinced that neuroscience has a valuable contribu-
tion to make, but in practice most carry out their work with little more
than a passing reference to the relevant neuroscientific literature.
The general concensus seems to be that the neuroscience that will
prove relevant to cognitive science is not the one that presently ex-
ists, but a future neuroscience that has progressed far beyond any-
thing we now know.

This paper had one objective: to explain how the data on neural
processing in the olfactory system force a reformulation of our under-
standing of perception. In the process I hope to have persuaded the
reader that neuroscience is relevant to cognitive science, and that it is
relevant now. Data from olfactory processing forced us to reconsider
previously held views of perceptual processing: perception is not re-
action to a stimulus, it does not require appeal to a nonbiological ele-
ment or force, nor is it internal representation. Perception is not the
kind of process we imagined it to be. Connectionist models, for all
the interest they engender, have not forced the kind of radical reap-
praisal of perceptual processing that olfactory research forces upon
us. Perhaps this was to be expected: formal models, after all, reflect
our current understanding and present theories of physical function-
ing. While connectionists were constructing their models, brains
were busy doing the unexpected. Perhaps, this is the real lesson of
neuroscience today for cognitive science, and the secret behind its
unique contribution.
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