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Abstract: Recent "connectionist" models provide a new explanatory 
alternative to the digital computer as a model for brain function. Evidence 
from our EEG research on the olfactory bulb suggests that the brain may 
indeed use computational mechanisms like those found in connectionist 
models. In the present paper we discuss our data and develop a model to 
describe the neural dynamics responsible for odor recognition and 
discrimination. The results indicate the existence of sensory– and motor–
specific information in the spatial dimension of EEG activity arid call for 
new physiological metaphors and techniques of analysis. Special emphasis 
is placed in our model on chaotic neural activity. We hypothesize that 
chaotic behavior serves as the essential ground state for the neural 
perceptual apparatus, and we propose a mechanism for acquiring new forms 
of patterned activity corresponding to new learned odors. Finally, some of 
the implications of our neural model for behavioral theories are briefly 
discussed. Our research, in concert with the connectionist work, encourages 
a reevaluation of explanatory models that are based only on the digital 
computer metaphor. 

1. Introduction 
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To understand brain function we need to know how the sensory systems 
process their information. Recent connectionist models provide an 
interesting explanatory alternative to earlier information–processing models 
based on the digital computer that viewed neurons as two–state logical 
decision elements organized into networks to compute simple Boolean 
functions. In the present article we outline the results of experiments in our 
laboratory that demonstrate the existence of sensory– and motorspecific 
information in the spatial dimension of EEG activity in the central nervous 
system. On the basis of our data we develop an explanatory model of the 
neural states responsible for sensory encoding; this model departs 
significantly from alternatives patterned after digital computers and it 
converges with recent connectionist models in the computational principles 
it uses. We suggest, however, that brains rely on mechanisms not found in 
other models; we propose four such mechanisms that may be necessary to 
solve problems critical to the efficient functioning and survival of any 
system that has to behave adaptively in an environment subject to 
unpredictable and often violent fluctuations, 

Special emphasis is placed in our model on "chaotic" brain activity.' We 
propose that the brain relies on chaotic as opposed to steady or random 
activity for several purposes: Chaos constitutes the basic form of collective 
neural activity for all perceptual processes and functions as a controlled 
source of noise, as a means to ensure continual access to previously learned 
sensory patterns, and as the means for learning new sensory patterns. 

2. Methodological considerations 

How does a sensory system process information? Models based on the 
digital computer define computation as a physical operation governed by the 
substates of the parts of the system as defined by rules operating on symbol 
tokens in virtue of their formal syntactic structure corresponding to real 
physical differences in the system. The formal elements or symbols are 
required to be discrete – that is, context independent; each distinct semantic 
property must be associated with a distinct physical property (Pylyshyn 
1984, pp. 50, 74). 

For many years physiologists have applied the computational model when 
interpreting their data. Thus, they found that the "code" of peripheral 
sensory systems is based on "labeled lines" (Bullock & Horridge 1965, p. 
274); the quality of a stimulus is conveyed by the selection of one or more 



axons from the immense number available, and the intensity is conveyed by 
the number of action potentials per unit time on each axon. This model 
worked for peripheral motor systems and for some parts of central nervous 
systems, to the extent that "feature detector" and "command" neurons could 
be identified. However, the search for this kind of information–processing 
scheme in the case of central associative functions has not been successful 
(Barlow 1972: Perkel & Bullock 1968). 

Our attempt to understand information processing in olfaction was based 
on three premises. (1) When an animal that is conditioned to discriminate 
between two odorant stimuli inhales one of them (a conditioned stimulus 
[CS]) and then responds correctly (with a conditioned response [CR]), there 
will exist, somewhere and for some time during the interval between the 
onsets of the CS and CR, some odor–specific information in the olfactory 
bulb to serve as the basis for the correct CR. (2) This information will be 
encoded in the form of a space-time pattern of neural activity for each 
odorant CR. (3) These patterns will be manifested, however indirectly, in the 
electroencephalographic (EEG) potentials recorded from the bulbar surface. 
After 12 years of search we at last identified some of the postulated patterns 
(Freeman & Viana Di Prisco 1986a). The results were beyond surprising; 
they took us so far outside the range of our previous expectations that we 
had no physiological metaphors with which to pin them down, and we had 
to draw on some new and fascinating fields of mathematics and physics in 
order to understand their implications. 

In principle the experiments were simple. Thirsty rabbits were conditioned 
(Viana Di Prisco & Freeman 1985) to lick (CR+) in response to an odorant 
(CS +) followed after 2 seconds by delivery of water, and merely to sniff 
(CR–) in response to an unreinforced odorant (CS–). Each rabbit had an 
array of 64 electrodes implanted permanently onto the lateral surface of the 
left olfactory bulb. The 64 EEG traces were amplified, filtered, and 
measured in brief time epochs within each trial; when made with adequate 
safeguards (Freeman 1987b) these measurements from collections of trials 
served to classify EEG epochs into groups both with respect to CSs and with 
respect to CRs. The odorant specific information was found to exist in the 
spatial patterns of the amplitude of the waveform of an oscillation of EEG 
potential that was common to all 64 channels and, by inference, to the entire 
bulb. We concluded that every neuron in the bulb participated in every 
olfactory discriminative response because they all participated in the 
oscillation. All that distinguished one odorant EEG pattern from another was 



the spatial configuration of the average intensity over an event time window 
at the common frequency, in the manner that patterns of monochromatic 
light are distinguished from each other by shades of gray. Local variations in 
phase, amplitude modulation, frequency modulation, and other aspects of 
the 64 traces were not found to contain odorant–specific information. 

With regard to our first premise (that odor–specific information must exist 
in the bulb), we chose to study the olfactory system because it is the 
simplest and phylogenetically the most stable and representative of sensory 
systems, is the best understood in its structure and function, and can be 
studied in its earlier stages without directly involving the brain stem and 
thalamus. We selected the rabbit because its head is sufficiently large to 
support the electrical connectors needed for chronic implantation and 
recording from 64 channels, yet the bulb is sufficiently small so that the 
electrode array forms a window covering a substantial portion of its surface 
area (20% in the rabbit, as opposed to 6% in the cat; Freeman 1978). We 
used appetitive conditioning so as to have distinguishable behavioral 
responses from each animal: licking with or without sniffing to the CS+ 
(CR+) and sniffing alone to the CS– (CR–). We found that high relative 
frequencies of occurrence for these autoshaped CRs (naturally occurring 
motor activity patterns) emerged within a very few trials in the first session, 
that they were stably maintained for numerous sessions, and that they were 
subject to quantitative assay with ease and reliability (Freeman 1981; Viana 
Di Prisco & Freeman 1985). 

3. Neurophysiological results 

3.1. Spatial analysis of neural activity. With regard to our second premise 
(that the odor–specific information is encoded as space–time patterns of 
activity), the set of chemoreceptor neurons in the nose and the set of mitral 
cells in the bulb to which they send their axons (Figure 1) both exist in the 
form of a sheet. Evidence from measurements of receptor unit activity, the 
electro–olfactogram, and odorant absorption to the mucosa upon stimulation 
with odorants show that receptor cells sensitive to a particular odorant are 
clustered nonuniformly in density in the mucosa, and that their spatial 
patterns of activation differ for differing odorants (reviewed in Moulton 
1976: Freeman & Skarda 1985). The projection of the primary olfactory 
nerve (PON) onto the bulb has a degree of topographic order. Studies with 
2–deoxyglucose (2–DOG) accumulation in the bulb after 45 minutes of 
exposure to an odorant show uneven clustering of dense patches in the outer 



(glomerular) layer of the bulb, indicating that a spatial pattern of receptor 
activity may result in a spatial pattern of neural activity in the bulb, which 
might in turn transmit odor–specific information to the olfactory cortex. 
However, metabolic studies cannot reveal the dynamic form of that neural 
activity in time periods on the order of 0. 1 sec. 

 

Figure 1. Schematic diagram of the main cell types and their interconnections in the 
olfactory bulb and prepyriform cortex: R, receptor; PON, primary olfactory nerve; LOT, 
lateral olfactory tract; M, mitral cell; G, granule cell; P, periglomerular cell; A, 
superficial pyramidal cell; B, granule cell; C, deep pyramidal cell. From Freeman (1972). 

With regard to our third premise (that the odor–specific information is 
manifested in the EEG), single neurons in the receptor layer, bulb, and 
cortex respond selectively to test arrays of odorants at various 
concentrations. The variability and overlap of response profiles involving 
multiple odorants are high at all steps of the olfactory system, there being no 
indication that more centrally located neurons are more "narrowly tuned" to 
odorants than are receptors. The number and even the existence of "primary 
odors" analogous to colors or tastes are unknown. 

Our early attempts to demonstrate spatial patterns of bulbar unit activity in 
responses to odorants were based on simultaneous multi–unit extracellular 
recording from 10 microelectrodes; the spatial sample was too small, and the 
time required to collect a sample (several minutes) was much too long. We 



turned to EEG recording from the bulbar surface because we had found a 
close statistical relationship in time and space between the amplitude of the 
EEG potential at selected points on the bulbar surface and the firing rates of 
mitral and tufted cells located at depths of several hundred microns below 
those points. That is, the surface EEG (Figure 2), consisting largely of 
extracellular compound postsynaptic potentials of granule cells, the 
dominant inhibitory interneurons deep within the bulb (Figure 1), provided 
indirect access to a spatial image of the locally averaged mitral cell activity 
patterns that constituted the bulbar output to the olfactory cortex. The theory 
and experimental evidence for this inference, including volume conductor 
theory and studies of the dynamics of bulbar neurons, have been compiled in 
a monograph (Freeman 1975) to which the interested reader is referred. 

Measurements of the spatial spectrum of the bulbar EEG (Freeman 1980; 
Freeman & Baird, in press) were used to fix the optimal intervals between 
electrodes in arrays (the spatial digitizing increment) at 0. 5 mm, 
corresponding to a Nyquist frequency of 1.0 c/mm. An 8 X 8 array gave a 
"window" onto the bulb of about 3.5 X 3.5 mm, given the restriction to 64 
channels. Measurements of the temporal spectrum of the rabbit EEG 
indicated that the range of greatest interest was 20–90 Hz. Filters were set at 
10 and 160 Hz; the temporal digitizing increment at 2 msec gave a Nyquist 
frequency of 250 Hz. A fixed duration of 76 msec was adopted as the 
minimum for the bulbar response on single inhalations, so that measurement 
of a single unaveraged event upon inhalation of an odorant or the 
background air for control consisted of 64 X 38 time values, digitized at 12 
bits with retention of the 8 most significant bits. Each trial yielded 3 control 
events and 3 test odor events. Each session yielded 10 CS+ and 10 CS– 
trials, constituting 120 events. The data base for the study comprised 18 
sessions with each of 5 rabbits after a familiarization period. 

Acquisition of these data required 64 preamplifiers, a high–speed 
multiplexer and ADC, and a dedicated computer (Perkin Elmer 3220) and 
disc. The limiting factor on data acquisition proved to be the core–to–disc 
data transfer rate with double buffering during the 6–second trial periods. 
Procedures were devised for off–line editing and artifact rejection (Freeman 
& Schneider 1982), temporal filtering and decomposition (Freeman & Viana 
Di Prisco 1986b), spatial filtering and deconvolution (Freeman 1980; 
Freeman & Baird, in press), and multivariate statistical analysis of the 
results of measurement (Freeman & Grajski, in press; Grajski, Breiman, 



Viana Di Prisco & Freeman, in press). The procedures are reviewed 
elsewhere in detail (Freeman 1987b). 

The measurement process consisted of curve–fitting of the 64 traces in 
each event. A set of 5 elementary waveforms or basis functions was 
identified as common to all 64 traces in varying degree. The sum of these 5 
basis functions was fitted by regression to each trace, yielding 5 matrices of 
64 amplitude values that incorporated 80% of the total variance of the event, 
as well as the matrix of residuals and the two matrices of the residues of 
high and low–pass digital filtering, all expressed as root mean square 
amplitudes. Evaluation consisted of determining which of these 8 matrices 
best served (or served at all) to classify events correctly with respect to CSs 
and CRs. No data were discarded until they were tested in this way. 
Moreover, the coefficients of the basis functions were examined to 
determine whether they contained odorant specific information. 

The end results were unequivocal. The matrices of amplitude of the 
dominant basis function (the one containing the largest fraction of total 
power), and only these, sufficed to classify events correctly. They did so at 
far above chance levels with respect to the two odorants in 4 of the 5 rabbits, 
who discriminated them behaviorally, but not the events recorded from the 
fifth rabbit, who failed to discriminate them (Freeman & Grajski, in press; 
Freeman & Viana Di Prisco 1986b; Grajski et al., in press).  

 

Figure 2. Four classes of states are identified for the olfactory system from EEG traces. 
Fluctuations are suppressed under deep anesthesia (lowest trace). In waking but 
unmotivated animals the amplitude is low and the trace is irregular and unpredictable. 
Under motivation the irregular activity is interrupted by brief oscillatory bursts following 
activation of the olfactory bulb by receptors on inhalation. Under several seconds of 
intense electrical stimulation of the LOT (top trace) an epileptic seizure is released. It is 
initiated after the failure of excitatory input transmission as shown by the decreasing 



responses at left to the last 5 pulses of the stimulus train. The seizure spike train then 
progressively emerges from a relatively quiet post–stimulus state. From Freeman (1987a). 

An example of an event (unaveraged traces) is shown in Figure 3. The key 
property is that every trace had the same temporal waveform. Exceptions 
were due either to artifacts or to electrodes not placed on the bulb. The 
amplitude differed between channels so as to form a spatial pattern that (on 
the average) was relatively constant and easily identified with each animal. 
These amplitude patterns after familiarization remained constant unless and 
until odorant conditioning was undertaken. New patterns emerged only in 
association with reinforced odorants, not visual or auditory CSs or UCSs 
alone. They remained stable within sessions and across sessions provided 
the S–R contingencies were unchanged. 

 

Figure 3. Left: A display of single unaveraged EEG traces is shown comprising a single 
odor burst among 10 bursts in a file from one trial set. The (x) marks an example of a bad 
channel record that was replaced during editing by an average of two adjacent records. 
Right: The root mean square amplitudes are compared for bursts without odor (above, 
"air") and with an odor (below, "amyl" acetate). There is a significant difference between 
the two patterns on the left but not the two on the right. From Freeman and Schneider 
(1982). 

Multiple patterns emerged under discriminative conditioning. When a new 
odorant CS+ was introduced or when a previous CS+ was changed to a CS–, 
the entire set of spatial patterns appeared to change. The amount of change 
between stages that involved an altered S–R contingency, when measured as 
a fraction of the total between–session, within–stage variance, was relatively 
small (7%). The information in these stable spatial patterns that served to 
classify events correctly with respect to CSs and CRs was not localizable to 
subsets of channels. That is, the information density (as distinct from 
content) was spatially homogeneous, much as a letter–space on a printed 
page is of equal value whether it contains a letter, a punctuation mark, or no 
character at all. 



3.2. The appearance of background activity. It is our belief that this is the 
first demonstration of the existence of sensory– and motor–specific 
information in the spatial dimensions of the EEG activity in any part of the 
cerebral cortex. The reason this has not been shown before is that problems 
had to be solved at all levels of the project. These included practical 
problems such as array design and manufacture, surgical implantation, 
control and measurement of rabbit behavior, management of data flows on 
the order of 1. 2 million bits per trial and several billion bits in each series of 
experiments, and basic theoretical problems in diverse fields including 
volume conductor analysis, statistical mechanics, nonequilibrium 
thermodynamics, nonlinear dynamics, and multivariate statistics applied to 
neural activity. The manufacture of arrays of electrodes, magnetic pick–ups, 
or optical probes and their preamplifiers merely opens the floodgates for the 
data. The difficult problems begin with the adaptation of recording to the 
conditions of normal, learned behavior, and with the rational design of 
algorithms for data reduction and refinement. Our methods happen to be the 
first that succeeded; there being no precedents, we have no other data with 
which to compare our results. just as we have pioneered in their acquisition, 
we must now break new ground in attempting to understand what they tell 
us about brain function. 

The elemental phenomenon that must be dealt with in olfaction, as in all of 
brain physiology, is the background activity manifested in the "spontaneous" 
EEG (Figure 2) and unit activity of neurons throughout the CNS. How does 
it arise, and what roles does it play? This activity is exceedingly robust; it 
survives all but the most drastic insults to cerebral tissue, such as near–lethal 
anesthesia, ischemia, or hypoxia. Perhaps the only reliable way to suppress 
it without killing the tissue is to isolate surgically small slabs of cortex 
(Burns 1958) by cutting neural connections while preserving the blood 
supply (and even then it may not be completely abolished). This procedure 
works for both the bulb and the prepyriform cortex (Freeman 1986), 
provided they are isolated from each other as well as from receptors and the 
rest of the brain. Under complete surgical transection of neural connections 
but with sufficient circulation for viability, each structure goes "silent" 
except when it is electrically or chemically stimulated. When perturbed and 
then left alone each structure generates a response and again falls silent. The 
responses to electrical impulse stimuli are observed through averaged 
evoked potentials (AEPs) and post–stimulus time histograms (PSTHs) of 
action potentials. 



The state of a dynamic structure is said to be stable if the system returns to 
that state after perturbation. If the basal state is steady and nonoscillating, 
the system is said to be at an equilibrium. When the values of amplitude or 
energy are plotted on a graph, one against another, a response has the 
appearance of a curve or trajectory that ends at a point as the system goes to 
equilibrium. The same point is reached from many starting conditions under 
perturbation. Hence the point is said to represent an "attractor," and the set 
of starting conditions defines a "basin" for the attractor (Figure 4). When the 
system is placed by control of its input into the basin of an attractor, the 
system dynamics is said to be governed by the attractor. 

When the stable equilibrium state of the bulb (Figure 2, bottom trace) or 
cortex is induced by deep anesthesia (Freeman 1986) or by cryogenic 
blockade of the axonal connections between the bulb and prepyriform cortex 
(Gray 1986) it is reversible. As recovery takes place the background activity 
reappears; the system can be said to "bifurcate" or change to a new state, 
such that the point attractor is replaced by a point "repellor" (Figure 4). A 
repellor is manifested when attempts to quash or inhibit activity fail or 
succeed only transiently. The interconnected structures, the bulb and 
prepyriform cortex, cannot stay at equilibrium and must enter ceaseless 
activity, even if they are only connected to each other and not to the rest of 
the brain (Freeman 1987a). A bifurcation takes place when the system 
undergoes a major transition in its dynamics, equivalent to, for example, the 
transition from sleep to waking, or from normal to seizure activity. The 
governing equations are the same, but the solutions change radically. We 
say that the control of the system dynamics is shifted from a point attractor 
to a chaotic attractor. This simply means that the system falls into a 
condition of restless, but bounded, activity. It is stationary in the statistical 
sense, but its mathematical properties differ from those of "noise" 
(Grassberger & Procaccia 1983). 



 

Figure 4. This vase–shaped structure is an attempt to portray a state space diagram for 
olfactory dynamics. The two horizontal dimensions constitute the axes for the amplitudes 
of activity of an excitatory subset and an inhibitory subset. The vertical axis serves to 
represent a bifurcation parameter, in this case the average level of driving input to the two 
subsets, consisting of input from centripetal activation of receptors and the input from 
centrifugal projection relating to arousal and motivation. The lowermost line represents 
an equilibrium or point attractor. Shaded areas represent a chaotic attractor, and the open 
circles represent limit cycle attractors. The activity for each stage is shown in Figure 2. A 
phase portrait derived from this diagram is shown in Figure 11. From Freeman (1987a). 

This background activity is statistically indistinguishable from what we 
call band–limited noise – that is, white noise passed through a band pass 
filter. We had known for years that the interval histograms of spike trains 
from single neurons conform to a Poisson process with a refractory period, 
so we had inferred that the background EEG was a local average of the 
dendritic potentials reflecting or governing the spike trains, a kind of 
"Brownian motion." In seeming confirmation of this view the correlation 
coefficient between pairs of traces fell with increasing distance between 
their recording sites. From our recent studies we now know that this view 
was incorrect. The instantaneous frequency of bulbar EEG activity is always 
and everywhere the same, no matter how "noisy" the waveform may seem. 
The inverse relation of correlation with distance is due to small but 
systematic phase gradients extending over the entire bulb (Freeman & Baird, 
in press) and not to statistical independence of the samples. The 
commonality of waveform does not extend outside the bulb, but does extend 
over distances of several min within it, much too far to be accounted for by 
volume conduction. The bulbar EEG is a global property that arises from 
dense feedback interactions within the bulb and yet is conditioned or made 
possible by extrabulbar feedback interactions. 



3.3. Evidence for chaos. An explanation of the neural mechanism of the 
background activity stemmed from our use of an assay, the Grassberger– 
Procaccia (1983) algorithm, to measure the degrees of freedom (the 
Hansdorff dimension) of a prolonged sample of the EEG from our animals 
at rest. Preliminary estimates ranged between 4 and 7 (Freeman 1987b), 
indicating that the activity reflected not "noise" but chaos (see note 1). This 
crucial distinction is analogous to the difference between the noise of a 
crowd at a ball game and the noise of a family dispute. Chaos is 
indistinguishable from random noise in appearance and in statistical 
properties, but it is deterministic and not stochastic (Garfinkel 1983; Rössler 
1983). It has relatively small degrees of freedom; it can be turned on and off 
virtually instantaneously, as with a switch, through bifurcation (see sect. 3.2), 
unlike thermal noise, for example, which requires relatively slow heating 
and cooling. Chaos is controlled noise with precisely defined properties. 
Any system that needs random activity can get it more cheaply and reliably 
from a chaotic generator than from a noise source. Even the random number 
generators of digital computers are algorithms for chaos; given the same 
seed, sequences of random numbers are precisely replicated. 

In order to replicate the EEGs of the olfactory system, we used sets of 
nonlinear ordinary differential equations that had already been used 
separately to model the bulb, anterior olfactory nucleus (AON), and 
prepyriform cortex (PC) with respect to their averaged evoked potentials 
(Figure 5). We coupled them into an interactive network (Figure 6). With 
proper settings of the feedback gains and distributed delays in accordance 
with our understanding of the anatomy and physiology of the larger system, 
the model yielded sustained chaotic activity that was statistically 
indistinguishable from the background EEG of resting animals (Figure 7). 
Under conditions of simulated receptor input the model generated "bursts" 
of oscillation that closely resembled those events seen in olfactory EEGs 
(Figure 8) during inhalation. 

 



Figure 5. Impulse responses of the neural sets simulated for M (mitral unit activity), A of 
the AON (EEG), E of the PC (EEG), and G of the OB (EEG activity). The internal gains, 
kee, kei, and kii, are: OB (0.25, 1.50, 1.50, 1.80); AON (1.50, 1.50, 1.50, 1. 80); PC (0. 25, 
1.40, 1.40, 1.80). The nonzero equilibria are not detectable with AEPs; the negative value 
for the PC is consistent with the silence of the PC after section of the LOT through the 
AON. From Freeman (1986). 

 

Figure 6. Flow diagram for the equation of the olfactory system. Each circle (except R) 
represents a second–order nonlinear differential equation (Freeman 1987a). Input from 
receptors (R) by the primary olfactory nerve (PON) is to periglomerular (P) and mitral 
(M) cells through the glomeruli (gl) subject to attenuation (x–), with connections to 
granule cells (G). Output by the lateral olfactory tract (LOT) is to the superficial 
pyramidal cells of the AON (E) and PC (A), each with inhibitory neurons respectively (1) 
and (B). Output of the PC is by deep pyramidal cells (C) into the external capsule (EC 
and centrifugally to the AON and OB in the medial olfactory tract (MOT). The AON also 
feeds back to the granule cells (G) and the glomerular layer (P). Excitation is (+); 
inhibition is (–). Latencies (L1 to L4) are calculated from measurements of the 
conduction velocities and distances between structures. Each part is treated as a lumped 
system in this first approximation. Each path is assigned a gain – for example, kMG = kee 
in the OB, kME from the OB to the AON, and kEG from the AON to the OB. From 
Freeman (1986). 

With some minor changes in gains between the bulb and AON the model 
system entered a degenerate state with a Hausdorff dimension near 2, 
manifesting a repetitive spike (Figure 2) that very closely resembled an 
epileptiform spike train that accompanied an electrically induced olfactory 



seizure (Figure 9). This phenomenon offered one means of studying the 
transition from a stable point attractor to a chaotic attractor (Babloyantz & 
Destexhe 1986) (Figure 4). We did this by increasing an excitatory gain 
connection in the model (kpm in Figure 10, between sets P and M in Figure 6). 
This yielded the Ruelle–Takens–Newhouse route to chaos (Schuster 1984). 
The chaotic attractor of the "seizure" state of the model was a 2–torus; the 
chaotic attractor of a normal hyperchaotic background activity was much 
higher in dimension, and its geometric structure remained unknown. These 
results, which represent the first successful simulation of normal and 
abnormal EEG activity, and the experimental evidence supporting the 
mathematical model (Freeman 1987a) are reviewed elsewhere (Freeman 
1986). 

 

Figure 7. Examples of chaotic background activity generated by the model, simulating 
bulbar unit activity (M) and the EEGs of the OB, AON, and PC. Qm = 5. 0, kM E = 1. 5, 
kEG = 0. 67. kEP = 1.0, kPM = 0.1, kMA = 1.0, kEA = 1.5, kAl = 1.0, kAP

 

Figure 8. Left: A simulated burst induced by giving a surge of input at R similar to 
receptor input density during inhalation and exhalation lasting 0.2 sec. Right: Sustained 
input onto preexisting chaotic activity. From Freeman (1986). 

Given this broad picture of the dynamics of this neural system (Figures 2, 
3, and 4) we can sketch a metaphorical picture of its multiple stable states in 
terms of a phase portrait. Each state is represented (Figure 11) by a surface 
in the two dimensions of the activity level of a representative local subset of 



excitatory neurons (left right axis) and another of inhibitory neurons (axis 
in–out of the page). Vertical height in each place indicates the amount of 
energy in the active state of a point. An evoked potential would appear as a 
counterclockwise spiral trajectory; background activity would appear as a 
roughly circular squiggle around the base of the central projection. The 
equilibrium state of deep anesthesia is represented in the lowest plate at the 
bottom of a well. Its lowest point is the point attractor. The shift upward 
from one plate to the next depends on the degree of interaction within the 
system (the bifurcation parameter), which is subject to numerous parameters 
in the model and to various conditions in the brain relating to input and 
arousal. The sequence of bifurcation to the waking but unmotivated state is 
shown by the emergence of the central uplift, a point repellor, and the 
formation of a surrounding well that contains at its base the chaotic attractor. 
The state changes by which the central uplift occurs results in transfer of 
governance from a point attractor to a chaotic attractor (Figure 4). 

 

Figure 9. Examples of 2–second time segments of EEGs recorded from a rat during a 
seizure, comparing these with the outputs of the model (see Figure 7). From Freeman 
(1987a). 



 

Figure 10.  The traces at left show the spike train output (1.0 sec) of the model for 3 
values of KPM, showing a low–dimension limit cycle (above), a high–dimension limit 
cycle, and a chaotic attractor. (In one sense the limit cycle has only one dimension, that 
along its trajectory, but in another sense it exists in multiple dimensions, so that it never 
crosses itself.) Reconstruction of the chaotic attractor in 3 dimensions shows that it is a 
2–torus without detectable orifices or folds. The upper–right frame shows a short 
segment (0.25 sec) from a different perspective. The lower–right frames compare the 
accessible OB and PC EEG traces during a seizure in a rat with the comparable output 
variables of the model. Although related, they are not identical. From Freeman (1987a). 

Figure 11 indicates that the olfactory system and its corresponding model 
have a hierarchy of states. The basic neural dynamics and the equations are 
the same in all states but, depending on various neural conditions and model 
parameters, the systems behave differently (e.g., during waking, sleeping, 
bursts, interburst intervals, seizures, and so on). Both systems display the 
capacity for abrupt, dramatic, global jumps from one state to another. These 
are the bifurcations. These are analogous to phase transitions in physical 
systems: ice to water to steam, for example. The bifurcations occur in many 
forms and varieties, so a formal definition is difficult if not impossible to 
provide.  



 

Figure 11. A set of hypothetical phase portraits is constructed from the bifurcation 
diagram shown in Figure 4. Inhalation results in the emergence of the collection of 
learned limit cycle attractors, one of which may be selected by odorant input placing the 
system in its basin. Alternatively, the response may fall into the chaotic well. This 
appears to occur on about 10% of control inhalations and about 40% of the test odor 
inhalations after completion of training, as well as reliably with novel odorants (Freeman 
& Viana Di Prisco 1986). On exhalation the learned attractors vanish, so the system is 
freed to accept new input. At the top is the chaotic attractor of seizure; at the bottom is 
the point attractor of deep anesthesia. From Freeman (1987a). 

3.4. Roles of chaos in odor recognition. This configuration is retained 
under increasing motivation (as by food or water deprivation), resulting in 
higher amplitudes of background activity, but only during late exhalation. 
During late inhalation and early exhalation a surge of receptor input reaches 
the bulb, depolarizes the mitral cells, sensitizes the bulb, and induces an 
oscillatory burst. This is a bifurcation from a low–energy chaotic state to a 
high–energy state with a narrow temporal spectral distribution of its energy, 
suggesting that it is governed by a limit cycle attractor. Order emerges from 
chaos in two respects. First, a narrow spectral peak emerges, indicating high 
temporal coherence. Second, the local amplitudes of oscillation take on 
values that are reproducibly related to particular odorants serving as CSs. 
The values differ for different odors, indicating that multiple limit cycle 
attractors exist, one for each odorant an animal has learned to discriminate 
behaviorally, and each one leading to regular oscillation in a burst. 

As hypothesized in Figure 11, these attractors are latent during late 
exhalation and in the absence of motivation. They reappear, all of them, 
with each inhalation under motivation and then vanish with exhalation. We 



postulate that the selection of an attractor upon inhalation is made by the 
presence of a CS odorant in the inhaled air or by the absence of an odorant, 
leading to the selection of an attractor corresponding to the background odor, 
the behavioral status quo. That is, the chemical stimulation of a particular set 
of receptors places the mechanism into a particular basin when the attractors 
emerge under bifurcation. The system is released into its basal state with 
exhalation, setting the stage for the processing of a new sample of 
information about an odor in the inhaled air. 

The dominance of a chaotic attractor, perhaps in some sense closely 
related at all levels, is seen to extend from the low–level state of rest to the 
high–energy state of seizure. We conjecture that chaotic activity provides a 
way of exercising neurons that is guaranteed not to lead to cyclic 
entrainment or to spatially structured activity (Conrad 1986). It also allows 
rapid and unbiased access to every limit cycle attractor on every inhalation, 
so that the entire repertoire of learned discriminanda is available to the 
animal at all times for instantaneous access. There is no search through a 
memory store. Moreover, the chaotic well during inhalation provides a 
catch–basin for failure of the mechanism to converge to a known attractor, 
either because the sample is inadequate or because a novel or unfamiliar 
odor is present in the inhaled air. In either case a "disorderly" or chaotic 
burst results that is characterized by a relatively low peak frequency and a 
broad temporal spectrum reflecting excessive frequency modulation. Despite 
the spatial commonality of waveform, these bursts do not converge to a 
consistent spatial pattern of amplitude modulation, unless by repeated 
presentation under reinforcement a new CS and a new CR are formed, in 
which case a new limit cycle attractor emerges. In other words, the chaotic 
well provides an escape from all established attractors, so that an animal can 
classify an odorant as "novel" with no greater delay than for the 
classification of any known sample, and it gains the freedom to maintain 
unstructured activity while  building a new attractor. 

In our view, then, chaos plays several crucial roles; the system is designed 
and built so as to ensure its own steady and controlled source of "noise" (i.e., 
chaos). Most remarkably, "signals" are not detected "in" the chaos because 
the mechanism turns the chaos "off 'when it turns a signal "on." The 
immunity of EEGs to trauma shows that the mechanism is extremely stable, 
but not absolutely so. Petit mal type seizures (Figure 2) occur when the 
feedback control system is driven outside its normal range by excessive 
electrical stimulation and develops a dynamic asymmetry. This imbalance 



results in a pathological instability that carries the system temporarily into a 
degenerate and low– dimensional basin of chaotic activity; its pattern 
resembles the EEG spike activity seen during the early stage of recovery 
from "silence" under deep anesthesia. We believe that this common form of 
epilepsy manifests an "Achilles heel" of a common and widespread neural 
mechanism for the genesis and maintenance of various forms of chaos as the 
essential ground states of the perceptual apparatuses of the brain. 

3.5. Learning and nerve cell assemblies. The neural mechanisms that 
underlie changes leading to the formation of a new limit cycle attractor have 
been described and discussed elsewhere in detail (Freeman 1975; 1979a–c; 
1981; 1983b). Our model is based on studies of changes in the waveforms of 
averaged evoked potentials in the olfactory system when the electrical 
stimulus is used as a CS+ or CS–, and on replication of these waveforms by 
the impulse response solutions to differential equations simulating the 
dynamics of the bulb or cortex. Briefly, the excitatory neurons in each of 
these structures are synaptically linked by axon collaterals ending mainly on 
the cell bodies in bidirectional synapses (Willey 1973). When these neurons 
are co–activated pair–wise by a CS+ their joint synapses are strengthened in 
accordance with the Hebb rule (Viana Di Prisco 1984). The required 
reinforcement is mediated by norepinephrine, which is released into the bulb 
and cortex (and elsewhere) by the locus coeruleus (Gray 1986; Gray, 
Freeman & Skinner, 1986). Our models indicate that a modest increase of 
25– in synaptic strength can increase the sensitivity of the bulb to a CS+ by 
40,000–fold (Freeman 1979a; 1979b). 

The linking together of a selected subset of neurons comprising perhaps 1–
5% of the total by strengthened excitatory synapses constitutes the formation 
of a nerve cell assembly (NCA). Thereafter, excitation of any portion of it 
tends to disseminate into activating the whole of it. We imagine that each 
NCA exists as a filamentous network in the bulb resembling mold growing 
on a piece of bread. We hypothesize that the activation of some of the 
neurons of a specified NCA selects the basin of the attractor into which the 
bulbar mechanism converges on inhalation. 

The key to understanding this switching device lies in an appreciation of 
the static nonlinearity that governs the behavior of neurons in an interactive 
mass. When left without input, neurons tend to fall below threshold and 
remain silent. Under maintained excitation they give steady output. Owing 
to the ionic mechanism of the action potential there is a dynamic range near 



threshold in which the tendency to form an action potential increases 
exponentially with depolarization. Restorative forces released by an action 
potential serve to limit the rate of firing, but only after the fact, so to speak. 

During exhalation, when receptor input is low, the bulbar neurons tend to 
fall to a low level of activity and sensitivity. During inhalation the surge of 
receptor input not only excites bulbar neurons, it augments exponentially 
their tendency to fire in response to input from receptors and from each 
other. Their strength of interaction increases dramatically over the entire 
bulb. At some point a threshold is reached in which the entire bulbar 
mechanism bifurcates from a low–energy chaotic state to a high–energy 
state. The NCA operates at the moment of choice when the surge of receptor 
input strongly forces the bulb far away from its rest state to some new 
activity pattern. 

We view the bulb as operating in two modes. During late exhalation and 
early inhalation it is in a receiving or diastolic mode (Figures 2, 3, and 11). 
Intrinsic interaction strength is low. The activity of afferent axons is 
imposed on bulbar neurons, which are free to accept it and to adopt 
corresponding levels of firing. Both the temporal and spatial transfer 
functions are broadly tuned so as to accept information and maintain it by 
local firing (Freeman & Ahn 1976). This is the low–level chaotic state. On 
bifurcation the mechanism converts to the transmitting, or systolic, mode. 
Internal interaction goes to a high level. The temporal transfer function of 
the model changes to a sharp peak at the burst frequency, and the spatial 
transfer function changes to give a rapid fall–off in energy above zero c/mm. 
The bulbar neurons no longer respond to receptor input but instead to each 
other. The information carried by each neuron is disseminated over the 
entire bulb and is integrated by every neuron in the bulb. It is also sent out 
of the bulb to the cortex, where it undergoes further temporal and spatial 
integration. The integration is facilitated by the high temporal coherence of 
the oscillatory burst and by the occurrence of the burst center frequency in 
the optimal pass band of the prepyriform cortex viewed as a passive filter 
(Freeman 1975; Bressler 1987a,b). Feedback from the prepyriform cortex 
and AON to the bulb has the form of modulatory biases, because the 
conducting pathways have strongly dispersive delays that act as low pass 
filters and smooth the feedback activity. Upon reduction in receptor input 
during exhalation the system collapses back into low–level chaos and the 
diastolic mode. 



3.6. Strong and weak points of our model. This view of olfactory 
discrimination arises from insights gained by inspection of the activity 
patterns revealed by these new data. It is consistent with most of what is 
known or believed about olfactory function from conventional 
electrophysiology, including the specificities of neuronal firing in response 
to odorant stimulation in anesthetized animals and the spatial patterns of 
selective 2–DOG (2–deoxyglucose) uptake in the glomerular layer (Lancet, 
Greer, Kauer & Shepherd 1982) on prolonged exposure of waking animals 
to odorants. It is also compatible with findings in olfactory psychophysics, 
particularly those relating to the relatively small number of odorants subject 
to absolute identification in the absence of prolonged training or (in man) 
the use of verbal labels (Cain 1980). It also solves the problem of 
neuroanatomical interfacing by the bulb between the receptors and the 
primary olfactory cortex as follows. 

The input path to the bulb, the primary olfactory nerve (PON), has a 
certain spatial organization that is imposed by ontogenetic development and 
by functional needs to be met in getting receptor input into the glomeruli in 
the face of lifelong replacement of the primary receptors (every 120 days, on 
the average). The output path, the lateral olfactory tract (LOT), has its own 
constraints in its ontogeny and in the need to service an array of targets 
ranging from the AON and tubercle to the amygdaloid nucleus and 
hippocampal. rudiments. By our hypothesis, within a few msec following 
bifurcation all information that is fed into the bulb during its "diastole" (the 
interburst period) is spread and mixed uniformly through the bulb during its 
"systole" (the burst). Each fraction of the bulbar output, perhaps on the order 
of 20%, irrespective of which part of the bulb it comes from, suffices to 
convey with adequate resolution all that the bulb has to say. Hence there 
need be no coordination or sharing of constraints in the developmental 
construction of the input and output paths, particularly with respect to their 
topographic organizations. 

Several challenges and uncertainties exist for the physiology of our model. 
One of the key features by which it must stand or fall is its requirement that 
the interneurons in the outer layer of the bulb (Figures 1 and 6), the 
periglomerular cells, must be excitatory to each other and to mitral cells 
(Freeman 1987a). Substantial but indirect experimental evidence has been 
adduced in support of this requirement (Martinez & Freeman 1984) as well 
as against it (Shepherd 1972). The cells in question are mixed populations of 
cells secreting GABA, dopamine, and one or more neuropeptides. 



Conventional wisdom has it that small GABA–ergic neurons are inhibitory. 
This appears to be valid for the deep–lying granule cells. Recent studies in 
the hippocampus have shown that GABA is hyperpolarizing when applied to 
the basal dendrites of pyramidal cells but depolarizing when applied to the 
apical dendrites (Misgeld, Deisz, Dodt & Lux 1986), suggesting that a 
chloride gradient along the apical dendritic shafts might reverse the sign of 
action of GABA between the two parts of the pyramidal cells (Newberry & 
Nicoll 1985). Were this or an equivalent mechanism to hold for the mitral 
cells in the bulb, an important prediction by our model would be confirmed. 

Another key property of our model is the requirement of mutually 
inhibitory feedback among inhibitory interneurons in the bulb, AON, and 
cortex. No direct demonstration that this does or does not exist has yet been 
devised. Evidence for chemical and electrical synapses between granule 
cells has been sought but not found. The possibility exists that the stellate 
cells of Golgi, Cajal, and Blanes, which are thought to be GABA–ergic, 
inhibit granule cells through their widely distributed axons, and might 
receive inhibitory input from them. 

A third weakness concerns the requirement for mutually excitatory 
connections among mitral cells in the bulb and among superficial pyramidal 
cells in the prepyriform cortex, which are modified under learning. The 
evidence that these requirements hold comes largely from recordings of field 
potentials and is therefore indirect. Studies of the predicted synaptic changes 
and their kinetics under modulatory neurochemical agents may be crucial for 
the support of our model. However, we emphasize that the jury is still out on 
these questions, that an answer of a particular kind is required for each by 
our model, and that some other answers can falsify it. We therefore have a 
brain theory that can be tested, elaborated, or negated by physiological 
experiments; it is not merely computational. 

In its mathematical structure our model is still in its infancy. We have 
some experience with a distributed system of coupled equations in 
bifurcation between equilibrium and limit cycle states (Freeman 1979c), but 
our chaotic generator is a lumped model using ordinary differential 
equations. In its psychological dimension our model is extremely limited, 
being competent to simulate only preattentive cognition (Freeman 1983a; 
Julesz 1984) and the instantaneous apperception of a stimulus, and not 
attentive inspection or sequential analysis. The feasibility of extending these 
ideas and experimental methods to neocortical systems is under exploration; 



evidence has been found that the visual cortex in a rhesus monkey operates 
according to the same basic neural dynamics as the olfactory bulb (Freeman 
& van Dijk, submitted). Most important, no claim for firm and substantial 
understanding of large–scale neural circuitry can be advanced until the 
mathematical theorists of distributed dissipative systems have caught up 
with experimentalists, or until engineers have built hardware models based 
on our equations and determined whether they behave the way parts of 
brains do. We are pleased to present something new to think about. 

4. Philosophical aspects 

4.1. Neural dynamics and the digital computer. Our present hypothesis is 
that odor discrimination and recognition depend on self–organizing neural 
processes in the olfactory bulb. The process that we label the "expectation" 
of an odor is realized in the formation of strengthened connections in a 
network of neurons constituting the NCA. This assembly, whose role is to 
amplify and stereotype the small input received on any given inhalation, 
produces a disseminated but low–density activity pattern in response to the 
stimulus, and then provides the crucial mechanism for mediating the 
emergence of an odor–specific activity pattern in a process of bifurcation. 
With this state change the entire olfactory bulb, rather than the limited 
number of nerve cells comprising the NCA, is engaged by a process of 
global integration to produce a stereotypic activity pattern mediated by the 
NCA but going far beyond it. Thus, when placed in a learned input domain, 
the neural system has a tendency to generate a qualitatively distinctive form 
of ordered behavior that emerges from the chaotic background state. 

Several important lessons concerning recent explanatory models in 
cognitive science can be drawn from our research. First, our model, based 
on self–organizing neural dynamics, makes it desirable to reevaluate the 
adequacy of the explanatory models based on digital and analog computers 
that have until recently provided the most influential metaphor in cognitive 
science. According to this metaphor, the behavior of a system is caused by 
the formal manipulation of bits of data (symbols) according to rules and 
operations specified by programs designed for a given task or tasks. The 
metaphor involves a distinction between system hardware and software, the 
functioning of a central processor that operates on the data and drives the 
system, and a memory housed in a separate space. Several factors have 
contributed to the decline of this metaphor, among them the evidence that 
implementations of it fail to produce behaviors in which animals and 



humans excel (Dreyfus & Dreyfus 1986) and the emergence of alternatives 
in the form of "connectionist" models. 

Our data indicate that what takes place in the olfactory system does not 
resemble the processes responsible for generating behavior in the classical 
computer paradigm. In the olfactory bulb, learning consists in the selective 
strengthening of excitatory connections among the neurons leading to the 
constitution of an NCA and to the possibility of bifurcation to a global 
activity state manifesting an attractor. Learning takes place during the first 2 
seconds following odor CS+ and UCS presentation with the release of 
norepinephrine in the bulb and elsewhere. Memory for an odor consists in 
the set of strengthened excitatory connections of the NCA, which, when 
activated under stimulus input, possesses the tendency to produce a global 
activity pattern characteristic of a given odor. These are not the types of 
mechanisms used by digital or analog computers. No program–specified rule 
or operation is brought to bear on input to the olfactory system. The 
component neurons generate their own ordered response to stimuli; they are 
self–organizing. There is no central processor, and learning and memory are 
functions distributed throughout the neural network. 

The process of odor recognition and discrimination can be conceived in 
terms of dynamic interactions at the level of the neural mass without appeal 
to symbols. There is preliminary evidence from anatomical and EEG studies 
indicating that this distributed model can be generalized for neural dynamics 
throughout the cortex (Freeman & Skarda 1985; Freeman & van Dijk, 
submitted). This means that the classical computer analogy may be 
unsuitable to explain the neural bases of behavior. This does not mean that 
digital computer models are to be discarded. Von Neuman machines have 
successfully produced some interesting classes of behavior, and to date 
psychological models seem to lend themselves more simply to formulations 
stated in terms of symbols and their formal manipulation by rules. What we 
wish to point out here is that brains do not use the same principles as the 
digital computer to produce behavior. This information may help 
neurophysiologists in framing hypotheses for further research. Rather than 
viewing brain function along the lines suggested by the classical computer 
paradigm – as a rule–driven and controlled system solving problems, 
completing patterns, and forming hypotheses by manipulating symbols –
neural dynamics suggest that the brain should be viewed as a self–organized 
process of adaptive interaction with the environment. 



4.2. Neural dynamics and connectionist models. Our model supports the 
line of research pursued by proponents of connectionist or parallel 
distributed processing (PDP) models in cognitive science (Baird, in press; 
Feldman & Ballard 1982; Hinton 1985; Hinton & Anderson 1981; Hopfield 
1982; Kohonen 1984; Rumelhart, McClelland & PDP Research Group 
1986). Although the models that fall under the rubric of connectionism are 
not identical, they do share a number of basic characteristics (Feldman & 
Ballard 1982). Each involves a processing system consisting of a densely 
interconnected network of units that interact with one another by sending 
and receiving signals modulated by the weights associated with the 
connections between the units. Processing is distributed throughout the 
system. The units may be organized into layers, and each layer sends to and 
receives signals from other layers composed of densely interconnected units. 
The state of each layer results from a synthesis of the states of other layers 
from which it receives input. 

What takes place in the brain may resemble the dynamic processes of self–
organization used by these models. Our neural model and the connectionist 
models converge in several respects. Both rely on parallel, distributed 
processes among highly interconnected units in interacting networks to 
produce behavior; both emphasize a self–organized or bottom–up, rather 
than a rule driven or top–down, explanatory approach; and both rely heavily 
on organized feedback among components within the system. 

The convergence of our model with connectionist models is instructive. 
Equally striking are the dissimilarities (Baird, in press). Comparing the 
models shows that the study of brain dynamics provides essential 
information about the physical processes responsible for behavior that is not 
available from current engineering research alone. Our data show that neural 
dynamics exhibit features not found in connectionist models, features that 
we hypothesize are essential for odor recognition and discrimination. 
Modifying the connectionist models along these lines could yield more 
flexible systems capable of operating successfully in a more realistic 
environment. 

4.3. Feedback of multiple kinds. The first point of difference between our 
model and connectionism concerns the process of feedback. Neural masses 
possess (and their collective dynamic behavior is determined by) dense local 
feedback among the neural units comprising the bulb and within it the 
multiple existing NCAs. This property is essential for the complicated 



dynamical processes of neural interaction needed for state changes and for 
the chaotic and limit cycle behaviors discussed above. Without locally dense 
feedback formed by the dendritic plexus that provides for a continuum of 
local interactions in a spatially distributed manner, the dynamic processes 
responsible for odor recognition and discrimination could not take place. 

There are two points to make regarding feedback in connectionist models. 
First, approaches of the perceptron class (Hinton 1985; Rosenblatt 1962; 
Rumelhart et al. 1986) do not realize this kind of feedback in their models, 
even to the extent circumscribed by limitations on the hardware. Some 
models of this class do involve feedback from one layer of units to another 
layer (Hinton 1985; Rumelhart et al. 1986). In these models the activity of 
one layer (B) is fed back to a previous layer (A), thereby modifying the 
weights of the units in layer A. In contrast to these models the process of 
"backward propagation" in the brain imposes long delays, temporal 
dispersions, and spatial divergences that do not hold for local feedback 
(Figure 5, L1–LA). Feedback between layers (e.g., between bulb and 
prepyriform cortex) is not equivalent to the short–latency, focused feedback 
taking place in the neuropil. There each node has surrounding plexuses of 
connections which concurrently excite and inhibit by recursive actions. 
Second, most connectionist models (e.g., Anderson, Silverstein, Ritz & 
Jones 1977; Hopfield 1982; Kohonen 1984) have excitatory feedback 
dominantly or exclusively; the role of inhibition has received scant attention. 
Models based on symmetric matrices of connection weights cannot simulate 
neural functions because of the existence in the nervous system of the mix 
of positive and negative feedback. There are exceptions in the connectionist 
literature; the models developed by Grossberg (1980) feature the local 
inhibitory feedback found in the neural mass. But the types of dynamics and 
of connectivity in those models still do not approach those occurring in the 
bulb and its NCAs, and we doubt that they can produce the global behaviors 
that characterize its neural dynamics. 

4.4. Roles of chaos. A second, related point of difference between neural 
dynamics and connectionism involves the nature of dynamic behavior 
exhibited, on the one hand, by neural masses, and on the other hand, by 
connectionist networks. Our data support the hypothesis that neural 
dynamics are heavily dependent on chaotic activity. We have suggested that 
without chaotic behavior the neural system cannot add a new odor to its 
repertoire of learned odors. Chaos provides the system with a deterministic 
"I don't know" state within which new activity patterns can be generated, as 



shown by what happens when the system encounters a previously unknown 
odor. If the odor occurs without reinforcement, habituation takes place; 
thereafter, the neural system exhibits patterned activity that we have 
identified as the control state for the status quo. With reinforcement, 
however, a completely different process occurs. If the odor is novel and the 
system does not already have a global activity pattern corresponding to the 
odor, then instead of producing one of its previously learned activity 
patterns, the system falls into a high–level chaotic state rather than into the 
basin for the background odor. This "chaotic well" enables the system to 
avoid all of its previously learned activity patterns and to produce a new one. 

In the neural system, we postulate that the process of state change leading 
to the unstructured chaotic domain is essential for preventing convergence to 
previously learned patterns, and hence for the emergence of new patterned 
activity in the bulb and the corresponding ability of the animal to recognize 
new odors. In the olfactory system the chaotic background state provides the 
system with continued open–endedness and readiness to respond to 
completely novel as well as to familiar input, without the requirement for an 
exhaustive memory search. 

Connectionist models can certainly be modified to produce chaotic and 
oscillatory behavior, but current theorists have not included these behaviors 
in their models, nor have they adequately explored the potential benefits of 
doing so. One reason for this may be that we all lack the appropriate 
mathematical tools to implement these behaviors at the spatial 
computational level. Another is that engineers have traditionally viewed 
oscillatory and chaotic behaviors as undesirable and something to be 
eliminated (Garfinkel 1983). 

The connectionist model reviewed by Hopfield and Tank (1986) is 
instructive in this regard. This model captures the dynamics of a system at a 
point in time after the bifurcation included in our model from diastole to 
systole has taken place. It is pictured in their phase portrait by a set of point 
attractors. Input places the system into the basin of one or another of these 
point attractors, to which the system then converges. There are two 
problems with this model from our perspective. First, the neural system does 
not exhibit behavior that can be modeled with point attractors, except under 
deep anesthesia or death. Convergence to a point attractor amounts to 
"death" for the system. In the Hopfield and Tank model, after the system 
converges to a point attractor there is no intrinsic mechanism by which the 



system can escape from it. An obvious solution is to turn the system off and 
then to reset it so that it is free to converge again to another point attractor. 
This is like using a muzzle–loader instead of a machine gun. Second, their 
connectionist model lacks an intrinsic mechanism like the chaotic well in 
our model that enables the neural system to add new odors to its repertoire. 
Without such a mechanism the system cannot avoid reproducing previously 
learned activity patterns and can only converge to behavior it has already 
learned. The neural system does not have this problem; chaotic mechanisms 
enable the neural network to learn new behaviors. 

4.5. Pattern completion versus destabilization. A third difference between 
neural dynamics and connectionism concerns the general conceptual 
framework in which the two models are explained. Connectionist models are 
sometimes understood as pattern completion devices, in which, for example, 
when the receptor units are given part of a pattern as input, the complete 
pattern can be reconstructed by interactions among appropriately weighted 
units comprising the network. 

The neural system we have described is not best thought of as a pattern 
completion device, although it may do that (Freeman 1983b). The problem 
is epistemological; we do not know what a completed pattern is (so 
convergence to it cannot be ascertained as in an error correction device), nor, 
we suspect, does the brain. We postulate that an NCA is activated wholly by 
input to any of its neural members, but we have no measure or observation 
of what the NCA looks like or how completely it is activated. The output of 
the system does not consist of the "completed" pattern of the NCA but of the 
entire bulb governed by an attractor. This global state tends to recur within 
certain "clusters" of spatial patterns, possibly expressed as vectors in some 
high–dimensional space, but no two are identical, and there is no expression 
for a boundary, such as the outline of a letter that is to be filled in. Most 
generally, these neural activity patterns are generated from within. Whatever 
"meaning" they have is embedded in the self–organized matrix of the entire 
brain. We have no way of knowing what constitutes a "completed" pattern 
or how to distinguish it from an "incomplete" one, either in terms of neural 
activity patterns or the mental life of an animal, presuming it exists. The 
pattern–completion concept is realizable only in terms of ideographs or 
conventional signs and symbols, and if we reject these, as we have for 
neurophysiology, then the concept too must go. 



We also think that the term "pattern" in the expressions "pattern 
completion" and "neural activity pattern" has very different connotations 
and different implications for our understanding of system dynamics. The 
term "pattern completion" describes a process in which a circumscribed 
structure can be generated as output from input that provides information 
about only part of the structure. Generally, the process depends on a prior 
"optimal" presentation of the pattern to adjust the weights among units 
comprising the network. The neural system works differently. It cannot 
depend on optimal input in its first (or, in fact, any) encounter with an object 
against which to compare or judge subsequent input. In the neural system, 
chaos is the rule, and the patterned activity to which the system converges 
following each state change is never twice the same, so again the notion of 
pattern completion loses its meaning. 

We think that the notion of "destabilization" provides a better description 
of the essentials of neural functioning than the concept of pattern completion. 
In an alert, motivated animal, input destabilizes the system, leading to 
further destabilization and a bifurcation to a new form of patterned activity. 
We hypothesize that convergence to an attractor in one system (e.g., the 
olfactory bulb) in turn destabilizes other systems (e.g., the motor system), 
leading to further state changes and ultimately to manipulation of and action 
within the environment. Our research leads us to postulate that behavior can 
best be modeled as a sequence of ordered, stable states in an evolutionary 
trajectory (Freeman & Skarda 1985). Input to the system continually 
destabilizes the present stable state and necessitates convergence to a new 
form of behavior. 

4.6. The sensory/motor loop. This raises a fourth issue. The fundamental 
character of behavior is adaptive interaction in the world (Churchland 1986; 
Skarda 1986). Feedback from the consequences of behavior modifies the 
system and projects it into a higher order of stability. In the nervous system, 
each change in the dynamic structure of the system, which in our 
mathematical model requires a new solution with its own trajectory, occurs 
in a sequence of state changes. The convergence to a patterned activity state, 
which marks the end state of this process, is externally manifested in some 
physical state (e.g., chewing) or in some anatomical structure (Ermentrout, 
Campbell & Oster 1986). What is important here is that this state has a 
musculoskeletal. pattern that constitutes both input to and output from the 
nervous system. The global activity pattern we record is the result of the 
destabilizing effects of receptor input to the system, but it is likewise the 



cause of motor output (e.g., licking) that causes further sensory input and 
manipulation of the environment, as well as being the result of previous 
motor activity (e.g., sniffing). These global patterns of the nervous system 
are at all times locked into both sensory and motor patterns of input and 
output. 

We know that the neural system accomplishes this, but our model clearly 
does not contain a description of the mechanism by which this interaction is 
achieved. There are existing prototypes that can be drawn upon by theorists 
in the work of Walter (1953), Ashby (1952), and Grossberg (1980) of 
systems with perceptual processes that interact with the environment via 
motor functions. Further interdisciplinary research along these lines is 
required before the mechanisms responsible for adaptive interaction will be 
understood. 

Our data lead us to the view that the neural processes of self–organization 
in the olfactory bulb are quite selective. The olfactory system does not 
respond to each odor presented to it by producing a corresponding activity 
pattern. Neural dynamics and the formation of patterned activity that can be 
correlated with a specific odor are a function of "motivation." What we have 
labeled motivation can also be characterized as a complex process whereby 
the organism predictively controls and maintains itself in the optimal 
condition given the circumstances in which it exists and acts. These global 
objectives constrain neural dynamics in two ways: They limit the possible 
range of patterned neural behaviors and they mediate interaction among 
various neural subsystems, such as that between the brain stem including 
reticular formation, the locus coeruleus, and the olfactory system relating to 
arousal, attention motivation, learning, and so on. 

Nonbiological self–organizing systems are different. Their behavior is not 
constrained by either of the global constraints operating in the neural system 
(Ashby 1952). Storms, for example, are self–organized phenomena that can 
be mathematically modeled using the same principles we use to model 
neural dynamics. A storm takes in and gives out energy, moves across a 
random path buffeted by external forces, and finally dissipates when it has 
depleted its energy sources. Storms, however, do not exhibit adaptive 
responses: The system dynamics of a vortex are not constrained by a global 
demand for preservation of the system, and the system does not incorporate 
information about its environment. The storm may, for example , move 
toward land, but it does not do so under the constraint to survive as a unity. 



The distinction we have drawn between brains and nonbiological forms of 
self–organization does not guarantee that brain dynamics will always exhibit 
the self promoting constraint just outlined. Sometimes brains produce 
behaviors that resemble the system dynamics characteristic of weather 
patterns; we identify some "neural storms" as seizures (Freeman 1986). The 
presence, however, of a self–organized neural process that is not self–
promoting disrupts normal functioning at all levels. These otherwise 
common and efficient nonbiological forms of self–organization take on a 
pathological character when they occur in the brain. We propose that they 
are identified as pathological because they violate the global constraints for 
self–promotion and adaptive control characteristic of normal brain 
functioning. Thus, a difference between biological and nonbiological forms 
of self–organization shows up at the level of the neural assembly long before 
there is any reason to refer to "consciousness" or "beliefs." Self–preservation 
plays a central role in biological self–organized systems, and processes that 
do not possess this feature may be selected against during evolution. 

The constraints on self–organization operative in the nervous system are 
not present in all biological systems. 

For example, plants exhibit adaptive behavior indicating that their systems 
are governed by the constraint for self promotion over time. Eucalyptus trees 
influence (modify) their environment by inhibiting the growth of other tree 
species and shrubs in their vicinity, and they promote their own rainfall from 
coastal fog. These are clear examples of self–promoting control of the 
environment, a feature that sets apart biological self–organized systems from 
nonbiological ones. But brains introduce a further constraint, not found in 
other biological forms. The key property of brain dynamics, we suggest, is 
control of body movement in space for the self–promoting purposes of 
search, attack, ingestion, escape, and reproduction. Plants have no brains. 
This is why we claim that there can be no adequate explanation of brain 
function without consideration of sensation in conjunction with movement. 
Nervous system dynamics is a self–organized process constrained by the 
requirement that the system anticipate and incorporate the immediate 
consequences of its own output within the larger constraints of regulating its 
well–being and the long–term optimization of its chances for survival. This 
is subsumed in J. J. Gibson's (1979) theory of "affordances." We are a long 
way yet from understanding how brains accomplish this. 
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NOTE 

1. "Chaos" in the oldest sense means the formless void from which order springs. The 
term is now commonly applied to disorderly, unpredictable happenings that give an 
observer no sense of regularity. In the technical sense used here it describes a kind of 
activity that appears to be random or stochastic by every standard statistical test, but is 
not. It is deterministic, in the sense that it can be reliably simulated by solving sets of 
coupled nonlinear ordinary differential equations or generated by building a system to 
certain specifications and putting energy into it. It is pseudorandom noise that can be 
reproduced with high precision if the initial conditions are identical on repeated runs, but 
which is unpredictable if new initial conditions are used. In contrast to noise, chaos has 
fewer degrees of freedom and is said to be low–dimensional. Chaos exists in many forms 
and degrees; Rössler (1983) has formulated an instructive hierarchy of equations to 
exemplify types of chaotic activity that will be of great interest for neural theorists. 
Introductory texts are by Schuster (1984) and Abraham and Shaw (1985). 
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Chaotic dynamics in brain activity 

A. Babloyantz 

Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine CP 

231, 1050 Brussels, Belgium 

Skarda & Freeman (S&F) attempt to extend the recent advances in the 
analyses of nonlinear dynamical systems to the study of the olfactory bulb. 

The suggestion that brain activity has chaotic deterministic dynamics is not 
new and has already been proposed by several authors (Kaczmarek & 
Babloyantz 1977; Nicolis 1985a; Roschke & Basar, in press). The degree of 
chaos in various stages of sleep and wakefulness has been evaluated from 
human EEG recordings (Babloyantz & Destexhe, in press; Babloyantz, 
Nicolis & Salazar 1985; Layne, Mayer–Kress & Holzfuss 1986; Rapp, 



Zimmerman, Albano, Deguzman & Greenbaun 1985). A lowdimensional 
deterministic chaos was found in an episode of petit mal seizure (Babloyantz 
& Destexhe 1986). 

Reference to the above–cited material might have strengthened the main 
point of S&F's target article, namely, that brain activity in animals as well as 
in man conforms to deterministic dynamics of a chaotic nature. 

In order to describe the various concepts of nonlinear dynamics without 
the help of mathematics, several misleading statements are introduced by 
S&F. "Chaos is controlled noise with precisely defined properties" (Sect. 3.3, 
para. 1) is an example. To understand S&F's paper, the reader must refer to 
more technical publications. 

In spite of these remarks, S&F's combination of multiple electrode 
recordings and dimensional analyses is a very promising method for 
analyzing brain activity. Such an approach sheds light on some aspects of 
cerebral dynamics not accessible by other methods. 

Chaos, symbols, and connectionism 

John A. Barnden 

Computer Science Department, Indiana University, Bloomington, Ind. 
47405 

As I have no doubt that the study of chaotic behavior in neural networks is 
an interesting and fruitful line of research, I shall confine my comments 
largely to some philosophical claims Skarda & Freeman (S&F) make and to 
the relationship of their model to connectionism. 

Governing metaphors should be kept constantly under review as a matter 
of principle. But I am not convinced that S&F's findings and arguments 
constitute a serious threat to the "digital computer metaphor," or, more 
precisely, to views of the brain as a symbol– manipulation device. There is, 
first, the danger of extrapolating from findings and theories about low–level 
sensory mechanisms to high–level cognition. S&F are sensitive to the 
danger and freely admit that their model is extremely limited 
psychologically (see end of Sect. 3.6), but they would nevertheless like us to 
allow the extrapolation. More important, however, S&F do not give us any 
new reason to be worried about viewing higher–level cognitive processes as 



based on symbol manipulation. As far as I know, the "symbol 
manipulationists" have in any case always presumed that low levels of 
perception are at least largely based on specialized mechanisms that are 
probably not to be regarded profitably as manipulating symbols in any 
conventional sense. [The fact that Al (artificial intelligence) researchers and 
others simulate such mechanisms on digital computers is of course only 
weakly relevant here. I To show, therefore, that the olfactory bulb is best 
described as operating in a way foreign to symbol manipulation is not to 
push the backs of the symbol manipulationists any nearer to the wall. 

The question of what the rest of the brain does with the output of the 
olfactory bulb (and directly connected brain centers) is significant. S&F 
themselves come near to suggesting that the bulb produces symbols when 
they say the inhalation of a learned odor pushes the bulb into a qualitatively 
distinctive, stereotypic state of activity. What is to stop us regarding these 
patterns as symbols? In what way is the idea that the rest of the brain uses 
these patterns in a symbol–manipulation style rendered implausible? I am 
not arguing that the rest of the brain does so use them, but only wondering 
what light is thrown on the issue by the S&F model. 

S&F might reply that the activity pattern resulting from a specific learned 
odor varies somewhat in response to environmental context and preexisting 
internal state, and therefore cannot be regarded as a symbol. This point has 
some force, but there appears to be nothing to stop me from retreating 
slightly and saying that the rest of the brain proceeds to extract a symbol – 
corresponding to some invariant part or aspect of the pattern. (That such a 
part or aspect exists is surely at the basis of S&F's model.) Also, no retreat at 
all might be necessary if we allowed symbols to embody a certain amount of 
"fuzz." This would depart from the conventional view of symbols in 
artificial intelligence and cognitive science, but it is not clear that the 
unfuzziness of symbols is crucial to those fields, even if most researchers in 
those fields think it is. The most crucial aspect of the symbol–manipulation 
view seems to me to be the ability to form complex structures out of basic 
symbols, to analyze such structures, to compare symbols, and to associate 
symbols with symbols and other entities. None of these abilities requires 
unfuzziness of symbols in principle [Nelson Goodman's (1968) views on 
notational systems notwithstanding]. 

S&F would do well to be more careful about nomenclature when making 
their philosophical claims. The metaphor that their attack is directed at is 



surely the symbol–manipulation metaphor, not a metaphor of the brain as a 
digital computer as such, since it is clear that the brain is not like a computer 
at a low level of description. Now, at the electronic level of description a 
computer does not operate by symbol manipulation any more than a neural 
net does at the neurophysiological level of description, so that any 
terminology that confuses levels is likely to be misleading. When, for 
instance, S&F say in Sect. 4.1 that the process of odor recognition and 
discrimination can be conceived in terms of dynamic interactions at the level 
of the neural mass without appeal to symbols, we might well respond that 
the behavior of a program running on a computer can be conceived in terms 
of dynamic interactions at the level of the electronic mass without appeal to 
symbols. That this response would not (I take it) get at the heart of what the 
authors are saying would be their own fault, to put it abruptly. 

While we are on the subject of levels, I dispute the implication in Sect. 4.2 
that "self–organized" is correlated with "bottom–up" or that "rule–driven" is 
antithetical to "self–organized, " A rule–driven system can be self–organized 
at the level of rules (since rules can modify themselves and other rules), and 
a topdown decomposition of a system can involve elements of selfo–
rganization at any level. Actually, it is not clear that either connectionists or 
S&F are adopting a bottom–up approach. To be sure, they are suggesting 
particular low–level mechanisms to explain particular high–level behaviors, 
but that does not make the approaches bottom–up. It is more that they are 
adopting a top–down approach different from those taken by certain other 
researchers. 

I am a little puzzled at the claimed divergence from connectionism with 
respect to types of feedback (Sect. 4.3). There seems to be nothing in the 
spirit of connectionism that disallows "locally dense feedback." Also, 
inhibitory feedback, which is claimed by S&F to have been given scant 
attention in connectionism, has played a very significant role in 
connectionist thinking for some time. One need only look, for instance, at 
the model of McClelland and Rumelhart (1981) and at the importance given 
to lateral inhibition in the Kohonen (1984) book cited by S&F. On the other 
hand, I do agree that connectionists would do well to look more closely at 
the transmission delays and temporal dispersion effects on connections 
(whether or not they are feedback connections) – I think it is really best to 
regard S&F's reliance on chaos and certain feedback effects as constituting a 
(most intriguing) extension of present–day connectionism rather than as 
diverging from it. 



Finally, I would be interested to know what happens in the olfactory bulb 
and in S&F's model when several individually learned odors are presented 
simultaneously. Can a spurious output result, by virtue of the combined 
odors pushing the system into an activity state corresponding to another 
learned odor? Does this, if it happens, have any correlation to observed 
behavior? What new light is thrown on whether the output patterns can be 
usefully viewed as taking part in symbol manipulation? 

Spatial analysis of brain function: Not the first 

Robert M. Boynton 

Department of Psychology, University of California at San Diego, La Jolla, 
Calif. 92093 

Skarda & Freeman (S&F) believe that their work is "the first demonstration 
of the existence of sensory– and motor–specific information in the spatial 
dimensions of the EEG activity in any part of the cortex" (Sect. 3.2, para. 1). 
Not so: Their attention should be directed to Toposcopic Studies of Learning, 
a book by Donald W. DeMott (1970). In addition to reporting his own work 
on toposcopy (study of the cortex in two dimensions of space), DeMott 
reviews the history of the subject, stating that two earlier reviews had been 
published previously, one by A. Rémond in 1955, the other by Livanov and 
Anan'yev in 1961 (which I will not cite directly, because I have not seen 
them). He states that the first toposcopic experiments that produced useful 
data were published by Lilly and Cherry (1951; 1954) using a 25–channel 
apparatus. 

De Mott studied a variety of learning problems in the monkey while trying 
to record simultaneously from as many as 400 electrode positions in the 
brain. He describes both AC and DC changes in the recorded potentials and 
relates his results to such phenomena as dominant focus, contingent negative 
variation, hemispheric dominance, and localization of function. For example, 
in his "one tone, one–string problem," a monkey received a grape reward for 
pulling the string, contingent upon the presence of the tone. Five Cebus and 
four Saimiri were studied over several sessions. On some trials, toposcopic 
patterns, in the form of an array of lights whose intensities were proportional 
to brain potentials, were recorded with a high–speed camera of original 
design at 250 frames per second. DeMott discerned a distinctive pattern of 
electrical activity associated with the first behavioral signs of learning, one 



that straddled the parietooccipital sulcus. Such activity was never otherwise 
observed, even during analogous visual learning studies. He refers to this 
activity as an apparent "lateral movement of activity in the region of the 
focus . . . sharply limited, as if by an invisible fence around the critical area" 
(p. 93). 

DeMott's book also includes detailed discussion of the design and 
manufacture of electrode arrays and of the problems encountered with 
respect to surgical implantation as well as the formidable problems of data 
analysis in what was, for him – given his limited resources – the 
precomputer era. 

S&F also state, "there being no precedents, we have no other data with 
which to compare our results. just as we have pioneered in their acquisition, 
we must now break new ground in attempting to understand what they tell 
us about brain function" (Sect. 3.2, para. 1). As I hope the foregoing will 
attest, these matters are what DeMott's monograph is largely about. 
Otherwise, it is a personal history (I find it a sad one) of what can happen to 
those who arrive before their time and choose to go it alone. With 
uncommon frankness, he tells of his long struggle with journal editors and 
grant reviewers, who eventually put an end to his research career on August 
31, 1968, ten years after the toposcopic project had begun. His efforts 
deserve to be remembered. 

Such carping out of the way, I will conclude by saying that I otherwise 
enjoyed the paper by S&F. Better than most of us, they have utterly 
banished the homunculus, or "green man," from their thinking and have 
called attention to the fundamental weaknesses of the simple–minded brain–
computer analogies. Yet I find S&F's records difficult to interpret, just as 
reviewers found DeMott's. Only time will tell whether chaos is in fact the 
route to making sense of the world. 

Can brains make psychological sense of neurological data? 

Robert Brown 

Department of Psychology, University of Exeter, Exeter EX4 40G, England 

Churchland (1980) distinguishes two varieties of skepticism concerning the 
usefulness of brain research for our understanding of how the mind–brain 
works: "boggled" and "principled" skepticism. Presumably this distinction is 



only a makeshift one, and skepticism merely an imprecise "folk–
psychological" notion, but since the terms have not yet been eliminated from 
our psychological vocabulary I will assume that they are still meaningful. 
Skarda & Freeman's (S&F's) target article, for all its good intentions, 
increases my skepticism (of both kinds). 

Being blinded by science could well be a function of one's own intellectual 
eyesight. No one expects the general theory of relativity to be easily 
assimilable in comic–book format, but an argument is still expected to meet 
the criteria of clarity and intelligibility. In their account of the collection, 
analysis, and interpretation of data S&F mystify and intimidate, albeit 
unwittingly. it must be a small and specialised community indeed that can 
follow each of the technical and mathematical steps with a truly critical eye. 
This is not a trivial criticism. It is claimed that the model can be tested, 
elaborated, negated, or falsified. We know that falsification (or potential 
falsification) is not the cutand–dried procedure it was Once thought; given 
such sheer complexity, what would it really take to falsify this model? There 
could be many an inferential slip 'twixt sniff and sip, and how many would 
honestly be the wiser? 

However, boggled scepticism is not a serious complaint; it can be cured in 
this case (in principle) by getting down to the hard work of understanding 
volume conductor analysis and the Ruelle–Takens– Newhouse route to 
chaos (Schuster 1984). Clashes of principle are clearly more serious, 
occasionally terminal, disorders. S&F's main metatheoretical thrust is that in 
view of certain complex neurological findings (in conjunction with certain 
relatively simple behavioural manipulations) the computational metaphor, 
although not to be scrapped outright, needs a serious overhaul. An 
alternative view is that the computational metaphor, although not immune to 
attack, cannot seriously be threatened by this kind of attack, for the 
following reasons: 

Clarity and chaos. It is difficult to appreciate S&F's argument clearly 
because of a marked tendency to switch chaotically between different levels 
of discourse. On the one hand they appear to support naive materialism at 
the neural level; the "theory can be tested ... by physiological experiments; it 
is not merely computational" (Sect. 3.6, para. 5; italics added). Of course, 
computational theorists are not constrained by the merely physiological, but 
that is beside the point. On the other hand we are told that we will not 
understand "large–scale neural circuitry . . . until the mathematical 



theorists . . . have caught up with experimentalists, or until engineers have 
built hardware models . . . and determined whether they behave the way 
parts of brains do" (Sect. 3.6, para. 6). What does this imply for the bedrock 
status of the neural /physiological? Are hardware models somehow more 
convincing simulations than "mere" computer simulations (hardware and 
software)? Perhaps, because there is a subsequent favourable reference to 
the simple mechanical models of the early cyberneticists. And if we change 
a few substantives in the quotation, it sounds suspiciously like what 
computationists are doing for cognition anyway – that is, they will never 
understand complex cognitive processes until appropriate formal languages 
have been developed for their description and they have been successfully 
simulated on computers. Finally, what is one to make of "the brain should 
be viewed as a self–organized process" (Sect. 4. 1, para. 4; italics added); 
this is symptomatic of the general confusion over structure and function, 
description and explanation, computers and computation. 

Metaphor and simile. Part of this confusion arises from the assumption 
that the computational metaphor is just the computer metaphor. S&F's 
characterization of the former is essentially a description of a rather basic 
computer; I doubt whether many computational theorists would wish to 
defend such a description as adequately capturing the features of a complex 
organism. The computational metaphor is usually seen as much more 
abstract; indeed, it has often been said that, since any process can be 
construed as a computational process, the metaphor is tainted with over–
generality, tautology, irrefutability, or emptiness. [See Pylyshyn: 
"Computation and Cognition" BBS 3(l) 1980.] 

The main problem with metaphorical assertions is that they can be taken as 
literally false (it doesn't rain "cats and dogs"). Why, then, can't they be taken 
as literally true, as saying something about "reality" ("information is held in 
short–term memory and transferred to a long–term store")? Now, whereas 
metaphor misleadingly implies a kind of identity, simile makes the weaker 
implication of resemblance. If the rain is "like lead shot" we can at least ask, 
"In what respect?" There has been much needless debate because relations 
of simple resemblance have been stated or understood as something stronger. 
How can a model of discrimination be explanatory if it contains a primitive 
element that discriminates? If we say that a suitably programmed computer 
"understands questions," does it really understand? How can we have visual 
images when there cannot really be pictures in our heads? There are many 
such examples. On the other hand, when simile is seen for what it is, such 



problems do not arise; hydraulic ethological models were never seriously 
criticised because there seem to be no pipes and valves in the nervous 
system, and Freudian hypotheses are not falsified by pointing to the absence 
of three interacting figurines in the skull. [See also Hoyle: "The Scope of 
Neuroethology" BBS 7(3) 1984.] 

The computational metaphor has strength, flexibility, and appeal because it 
is not really a metaphor, it is just a simile; and if the functional resemblance 
between two systems is sufficiently convincing, that is all that matters. But 
S&F are not convinced. Why? They look into the nervous system (albeit 
very indirectly) and find no symbols, only dynamic neural patterns. Is this 
surprising? Symbols are in the eye of the beholder. One can look at this page 
and find no symbols, only patterns of grey. The popular dogma that brains 
and computers deal in symbols is misleading; their currency is electricity. 
By saying that a device manipulates symbols we are attributing 
intentionality to it – how else would it know what things were or were not 
"symbols"? But if dynamic neural patterns are to be discriminated, then 
surely they can be named, formalised, computed? otherwise we would only 
see chaos, in its everyday sense. 

It would be foolish to suggest that neural dynamics or statics are 
completely irrelevant for an understanding of mind and behaviour, and 
equally foolish to suggest that the computational metaphor is impregnable. 
If S&F are simply claiming that their data require different kinds of 
computations, then this is unexceptionable, but they seem to be 
simultaneously attacking a straw man and trying to throw the baby out with 
the bath water (not literally, of course). Principled attacks on the 
computational approach are likely to be top–down in terms of intentional 
and experiential arguments (Dreyfus 1972; Gauld & Shotter 1977; Searle 
1980). And since computational theorists handle intentionality at worst 
trivially and at best controversially, I fail to see how neuroscientists could 
even begin to tackle the issues. 

When the "chaos" is too chaotic and the "limit cycles" too limited, the 
mind boggles and the brain (model) flounders 

Michael A. Corner and Andre J. Noest 

Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The 
Netherlands 



Let's start from the beginning. To begin with, the olfactory bulb must 
respond to each odor the mucosa is capable of discriminating with some sort 
of specific pattern of excitation, presumably derived from the 
ontogenetically determined distribution of osmochemical receptor 
specificities. If each class of receptor cells is spread out over a large enough 
area of the olfactory mucosa, a widespread projection of odor–specific 
sensory volleys can be guaranteed even if, as in other sensory systems, 
nearest neighbor relations are largely preserved in the central projections. In 
this sense Skarda & Freeman's (S&F's) tantalizingly brief statement in Sect. 
3.6 about the absence of a requirement for ontogenetic constraints on 
afferent topography is true enough, as far as it goes (provided, of course, 
that each receptor's terminal field does not encroach too much upon the 
territory of its neighbors). The next step in olfactory discrimination would 
be the evocation of a diffuse polyneuronal oscillation in the bulb during the 
inhalation phase of each sniff in a motivated animal. This "something is out 
there" carrier waveform is manifested as a "chaotic" broad–band EEG signal 
within the gamma range of frequencies (ca. 40–80 cps). The dual effect of a 
smell – to provide sensory information together with a nonspecific signal 
preparing the brain for dealing with it – thus resembles, in general terms, the 
classical picture of a "reticular arousal system" linked to sensory projections 
to the neocortex. In the latter case, however, rather than high–frequency 
waves being triggered, low–frequency waves (EEG alpha and delta bands) 
become suppressed during arousal. Alerting responses in the 
septohippocampal system in turn consist of a synchronized neuronal 
oscillation, but one which is much slower (in the EEG theta band) than the 
one found in the olfactory system. Why these differences? 

S&F's suggestive attempt to generalize their paleocortical model by 
postulating the existence of similar waves (i.e., in the EEG "gamma" range) 
in the neocortex (that have gone undetected owing to cytoarchitectonic 
differences between the two structures) fails to reach our plausibility 
threshold. The laminar organization of neocortical tissues would appear to 
be eminently suitable, despite its relative complexity, for detecting even 
weakly synchronized fluctuations of neuronal activity. An important task 
facing any theory which aspires, albeit implicitly, to providing a general 
explanation of the biological significance of "brain waves" must surely be to 
explain the appearance of prominent cortical oscillations – alpha rhythms, 
"spindling," delta waves – precisely at those times (ranging from drowsiness 
to deep sleep) when sensory processes appear to be at a minimum even with 
respect to internal sources – as in dreaming. On the other hand, the basic 



notion of widely synchronized neuronal carrier waves that become 
"destabilized" by afferent input (see Sect. 4.5), in a spatially distinctive 
manner for each discriminable stimulus, is by no means excluded by 
differences among brain regions displaying the precise characteristics of 
these (chaotic) waves. Perhaps the major challenge for S&F's model, 
therefore, will be to account for the olfactory system displaying the very 
EEG waveform and amplitude–pattern that have actually been observed. By 
the same token, light needs to be shed on the possible significance of the 
low–amplitude, highly chaotic, "background" EEG present between sniffs 
(as well as continuously in a nonmotivated animal). This is the activity, after 
all, which the authors believe (see Sect. 3.2) constitutes "the elemental 
phenomenon . . . in all of brain physiology"(!). Disappointingly, it is almost 
totally neglected there–after, although this omission became apparent to us 
only after our realization that the broad–band EEG gamma waves seen 
during (motivated) inhalation in a naive animal were not, in fact, what was 
meant by the term "background" activity as used in the target article! 

Odor–specific differences are reported to become overtly manifest in the 
multichannel olfactory EEG only after proper reinforcement has taken place. 
Spatially distinctive amplitude patterns are then detectable, taking the form 
of extensive limit–cycle activity in the bulb, contained within a relatively 
narrow band of EEG gamma frequencies. These patterns presumably reflect 
the magnification of preexisting differences in the spatial distribution of 
afferent signals and evoked synaptic activities in the bulb, without which no 
distinction among various inhaled (unconditioned) odors could have been 
made in the first place, What, then, needs to be "learned" about such signals 
or (as S&F would put it) to be added to the animal's smell repertoire? 
Nothing else, surely, than that the odor in question has acquired a particular 
behavioral significance: eat it, jump it, avoid it, and so on. This being the 
case, isn't it possible – even likely – that each recognizable new EEG pattern 
carries information not about the input but, rather, about the output side of 
the olfactory loop (i.e., the motor response system to which the stimulus has 
become linked by virtue of conditioning)? We're very much interested in 
knowing, therefore, exactly how many of these distinctive spatial patterns 
have in fact been identified, and whether two odors with more or less the 
same "meaning" for the organism would stand much chance of being 
discriminated on the basis of EEG analysis. 

Finally, serious semantic ambiguities have arisen in the course of our 
attempt to understand the more strictly mathematical aspects of S&F's paper. 



After satisfactorily dispensing with the straw man of digital computers as 
useful for modeling any kind of brain, the authors proceed to find fault with 
"connectionist" models because of their current shortcomings in the light of 
recent neurophysiological findings. But in what sense is the Freeman model 
– not the Jumped (i.e., spatially averaged) version described here, which, by 
definition, is incapable of even beginning to deal with the spatial EEG 
patterns on which the whole theory rests, but the promised but still 
preliminary distributed model – itself not a connectionist model? In the 
absence of any definition of a qualitatively new class of models 
incorporating features that are inherently absent in a connectionist approach, 
S&F's scheme must be considered as constituting simply a possible 
improvement within that category. If we then try to pinpoint what their 
precise suggestions for the incorporation of new features are, we are unable 
to find any satisfactory starting point for carrying out the proposed 
improvements. Several of the deficiencies attributed to existing models, 
such as failure to incorporate inhibition, asymmetric synapses, or 
endogenous noise in the system, fail to do justice to the state of the art in 
this field. Even if the next step were to entail the introduction of coupled 
limit–cycle oscillators, distributed models involving sheets of interacting 
circuits (each resembling the basic one in the Jumped model presented by 
Freeman & Skarda) have in fact already been studied extensively. (See Note 
Below) 

Even in structurally homogeneous variants of such models, oscillating 
activity can (among many other possibilities) become ordered in spatially 
inhomogeneous, non–periodic patterns. These can usually be characterized 
by topologically conserved phase patterns involving "vortex" – or "string" – 
singularities embedded in a smooth phase–field. It can be predicted that in 
case of spatial smoothing over a scale larger than the size of the vortices, 
such phase patterns would appear instead as spatially nonuniform amplitude 
patterns associated with a smooth phase–field. If the present data turn out 
not to be explicable along these lines, then it seems logical to assume some 
form of "pinning" of the oscillatory patterns by structural disorder. It is 
plausible to suppose that each of the many possible distinct patterns could 
then be "nucleated" by the appropriate set of incoming stimuli. Developing 
such conjectures into testable theories will probably require that 
investigators start delving into the complexities of structurally 
inhomogeneous models. In view of the many possible ways of generalizing 
the existing ones, it would be extremely helpful if experimentalists 
attempted to specify, as precisely as possible, the lessons to be learned (for 



example, from olfactory cortex physiology) that would allow such improved 
models to be developed. 

It is wonderful for psycho(physio)logists to master the mathematics of 
cooperative networks, and to try to apply this knowledge to the unraveling 
of the deepest (or even the superficial) mysteries of the brain, but the 
required conceptual underpinnings for such flights into higher spheres must 
not be neglected. In our opinion, much more attention needs to be devoted to 
such fundamental things as clarity of definitions, explication of assumptions, 
rigor in logical structure, and completeness in the consideration of relevant 
theoretical and empirical material. 

NOTE 

1. There exists a considerable body of literature on spatially distributed, coupled limit–
cycle oscillations. Good lists of core references are cited by Oono and Kohmoto (1985) 
and Winfree (1980). 

On the differences between cognitive and noncognitive systems 

D. C. Earle 

Department of Psychology, Washington Singer Laboratories, University of 
Exeter, Exeter EX4 4QG, England 

Skarda & Freeman (S&F) interpret their findings as supporting the proposal 
that brain function is a self–organized process of adaptive interaction with 
the environment, a process to be conceived in connectionist terms and 
involving parallel distributed processing. These views are set in opposition 
to the proposal that the brain is a rule–driven and controlled system solving 
problems, completing patterns, and forming hypotheses by manipulating 
symbols. 

Two separate issues are conflated here. The first concerns the question 
whether the appropriate model for the brain is the connectionist model, with 
distributed parallel processing, or that taken from the digital computer, with 
a limited–capacity central processor and a sequential organization. This 
question is separate from whether the brain is a symbol –manipulating and 
rule–driven problem–solving device. The former is a question about the 
functional architecture of the brain, whereas the latter is the question 
whether or not the brain is an information–processing device. A distributed 



information –processing system may implement rules, complete patterns, 
manipulate symbols, and, if need be, formulate hypotheses. Consider, for 
example, a distributed information –processing system that takes as its input 
a symbolic representation, performs a transformation, and then outputs a 
different symbolic representation. Such a system is exemplified by certain 
implementations of the cooperative stereo–matching algorithm proposed by 
Marr and Poggio (1976). An information–processing system may be 
described at the highest level in terms of its computational theory; however, 
the computational theory may be realised in devices using different 
functional architectures – that is, devices with distributed parallel processing 
or sequential processing. 

To adopt the proposal that the brain is an information–processing and 
symbol–manipulating system is a methodological decision of its proponents, 
and as such constitutes adherence to a particular research programme. An 
information process may be realised in a neural system or a computer, 
whether it is sequentially organized or performs distributed parallel 
processing, but on the higher level of analysis it remains an information–
processing system. As such, it should be described using informational 
terms – that is, rules, symbols, representations, and the language of 
information–processing operations (e.g., detection and discrimination). 
Information processes are not to be conceived directly in neurophysiological 
terms or in the terminology of electronics. If, for example, one says of a 
certain cell in the visual cortex that it is a bar detector or that it makes a 
measurement on the image, then one describes that cell in information–
processing terms (insofar as detection and measurement are information –
processing operations). At this level of description the output of such a cell 
and its interactions with any neighbouring cells are symbolic in that they 
represent a detection or its absence, or a measurement. 

If the information–processing paradigm is not adopted, then the 
appropriate terminology is not that of symbols, rules, and so on, but a 
description in terms of whatever are now judged to be the intrinsic 
properties of the system being described. In the case of a neural system, 
these may be synaptic connections, inhibition, fatigue, electrical impulses, 
and perhaps chaos, attractors, and repellors. Thus, an account of the visual 
tilt aftereffect can be given in terms of differential fatigue of cortical cells 
with orientated receptive fields without recourse to the language of 
information–processing systems; it can be given in terms of the intrinsic 
properties of the neural substrate. In such a case there may be no basis for 



adopting the information–processing paradigm and giving an account using 
the notion of bar detectors – although, in principle, the account could be 
phrased in these terms were that paradigm to be adopted. It may not be 
necessary to use the language and concepts of information processing to 
give an account of the tilt aftereffect, but when considering the 
correspondence problem in stereopsis (Marr 1982) there may be 
considerable advantages in using such a language. The connectionist 
movement offers two fundamental challenges: First, a different functional 
architecture for information–processing systems is proposed. Second, and 
separately, the connectionists claim to provide a way of describing the 
behavior of aggregates of processors without the assumption that the 
processing is an informational one. 

The problem of distinguishing between cognitive and noncognitive self–
organising and distributed processing systems may now he viewed 
differently from the position adopted by S&F. I propose that the critical 
property distinguishing cognitive from noncognitve systems is not adaptivity, 
but information processing. One would not want to say of a weather system 
that it is an information–processing system, and one would explain its 
behaviour in terms of the intrinsic properties of the system – that is, the 
pressure and temperature of air masses, humidity levels, turbulence, and so 
on. A variety of homeostatic and adaptive devices (e.g., thermostats and 
eucalyptus trees) can also be described in terms of their intrinsic properties 
without appeal to informational concepts. Perhaps the major challenge of the 
connectionist movement in relation to psychology is that, although not 
necessitating a noncognitivist stance, it nevertheless promises to provide a 
noncognitive account of complex behaviour. 

Finally, it is to be noted that S&F have given a connectionist account only 
of neural activity in the olfactory bulb. Their claim, however, is to have 
given such an account of odour recognition. and discrimination, and this is a 
different matter. As they are at pains to emphasize, the connectionist 
processing that they describe for the olfactory bulb must be linked to the 
motor system to enable interaction with the environment – that is, 
discriminative behaviour. To this end, a particular pattern I neural activity in 
the bulb must serve as the condition for condition–action link. One difficulty 
here is that a distributed parallel processing module may be embedded in a 
more complex hybrid and controlled system with a sequential organization. 
Furthermore, a condition–action link can be interpreted as a rule in an 
information system or as a direct neural pathway in a noncognitive system. 



Skarda & Freeman attempt to draw conclusions concerning the brain as a 
whole on the basis of the study of only a small part of the neural substrate of 
a discriminative interaction with the environment. 

The virtues of chaos 

Alan Garfinkel Department of Kinesiology, University of California at Los 
Angeles, Los Angeles, Calif. 90024 

Only recently (Lorenz 1963) was it realized that deterministic systems can 
display behavior that appears random. This phenomenon, called "chaos," 
offers a new approach to modeling erratic processes. It should be stressed 
that the chaos that arises in deterministic systems is not total chaos, but 
rather is controlled and bounded, and has definite qualitative form. It also 
differs from ordinary random behavior in that it is low–dimensional, 
whereas traditional "noise" arises from the central limit theorem, which 
predicts a normal distribution from the addition of a large number of 
independent contributions. 

Skarda & Freeman (S&F) propose that the background EEG in the 
olfactory bulb is chaotic. The principal evidence for this claim is their report 
of calculations of the "dimension" as lying between 4 and 7. Such 
calculations of apparent dimension are one way of distinguishing chaos from 
noise, although there are difficulties and pitfalls in this approach (see 
especially Grassberger, 1986, for a discussion of fallacious calculations). 

But the calculation of dimension is only one way of distinguishing chaos 
from noise, and it suffers from being just a number. Methods like attractor 
reconstruction and Poincaré sections (Froehling, Crutchfield, Farmer, 
Packard & Shaw 1981) have the additional advantage that they give 
qualitative pictures of the behavior and of the form of its underlying 
mechanisms. Such information is much deeper; the dictum here is that 
"quantitative is just poor qualitative." See Roux, McCormick, and Swinney 
(1981) and Farmer, Hart, and Weidman (1982) for applications of these 
methods to chemical chaos and fluid turbulence. 

Once one has established the fact that a given phenomenon is a chaotic 
process, the next question is: What is chaos doing there? S&F suggest that it 
is playing a functional role, an idea that is something of an about–face for 
chaos. Most writers on the subject tend to assume that chaos is something 
bad; the proposed examples of chaos in physiology, such as cardiac and 



respiratory arrhythmias (Glass & Mackey 1979), would support this view. 
But chaotic behavior can also be functional and adaptive. Consider the chaos 
of fluid turbulence. Turbulent fluids have useful properties that are not 
found in nonturbulent states. For example, the mixing properties of 
turbulence greatly increase the fluid's ability to take imposed heat or 
movement and equipartition it out. 

A striking example of the functional role of chaos can be found in a study 
of population dynamics by Auslander, Guchenheimer, and Oster (1978). 
They study a model of a coevolving host/parasite system and find that, for 
certain ranges of key parameters, the host species displays chaotic variations 
in population level over time. They interpret this by suggesting that "for a 
host population being pursued by a coevolving predator, it is surely adaptive 
to maintain a demographic and genetic pattern as 'untrackable' to the parasite 
as possible" (p. 290). 

It may well be that in physiology, chaotic behavior can be quite useful, 
serving to randomize a system in cases where regular behavior would be 
damaging. A case in point might be the normal cortical EEG. It is interesting 
that many writers have suggested that epileptic seizures might be examples 
of chaos. In fact, the opposite seems to be true: In seizures, the EEG 
becomes regular and periodic, and it is the normal ("desynchronized") EEG 
that is irregular. Given the undesirability of periodic cortical behavior, it is 
reasonable to suppose that the nervous system has evolved a reliable 
mechanism to desynchronize the EEG. As an example of the utility of such 
"active desynchronization," consider the behavior of a platoon of soldiers 
crossing a bridge. Since periodic behavior (marching in ranks) might set the 
bridge into destructive resonant oscillation, the soliders "break ranks." It is 
likely that the nervous system can effect a similar active desynchronization, 
in situations where randomness is too important to be left to chance. in the 
case of the soldiers, there is a commanding officer who gives the order to 
desynchronize. Here the difference between high–dimensional noise and 
low–dimensional chaos becomes crucial, If one wanted to desynchronize a 
process, the availability of a chaotic attractor would offer an opportunity to 
do it by a low–dimensional control: Only a few parameters need be altered 
to move the system into and out of chaos. 

A similar phenomenon may occur in muscle activation. If individual motor 
units were to fire periodically, they might tend to synchronize, producing 
undesirable tremor Hence, there may well be an active desynchronization 



mechanism in sustained contraction that "spreads out" the motor unit 
timings to fill the time interval of the activity. 

In general, it may be that for all oscillatory processes in physiology, a 
perfectly periodic oscillation is undesirable. Chaos could here play the role 
of introducing a useful wobble into the period or amplitude, while retaining 
the overall form of the process. 

Stable self–organization of sensory recognition codes: Is chaos 
necessary?  

Stephen Grossberg 

Center for Adaptive Systems, Boston University, Boston, Mass. 02215 

Freeman and his colleagues have developed one of the classical 
experimental and modeling paradigms of neurobiology through a 
remarkable synthesis of technical virtuosity, physical intuition, and 
intellectual courage. Their systematic approach has led them to articulate a 
number of fundamental problems concerning the self–organization of 
sensory codes and to propose possible approaches to the solutions of these 
problems. Due to these characteristics, data and modeling ideas from the 
Freeman school provide one of the best vertebrate sources of quantitative 
results about interactions between cortical sensory representations and their 
appetitive modulation, and have therefore played a valuable role in testing 
the principles and mechanisms of adaptive resonance theory (Grossberg 
1982a). 

Even in such a systematically explored neural paradigm, definitive data are 
more the exception than the rule. In the absence of data that afford a unique 
specification of generative neural mechanisms, a number of theoretical tools 
can be invoked to impose additional constraints. Two such tools are 
mathematical and simulation analyses of the emergent properties of those 
model neural systems that are consistent with basic neural organizational 
principles and the data at hand.  Such results are briefly reviewed here to 
help weigh the key hypotheses of Skarda & Freeman (S&F). 

After reviewing fundamental facts about spatial pattern coding by 
temporally entrained waveforms and the role of associative learning and 
expectancies, S&F focus on their central  "conjecture that chaotic activity 
provides a way of exercising neurons that is guaranteed not to lead to cyclic 



entrainment or to spatially structured activity. It also allows rapid and 
unbiased se access to every limit cycle attractor on every inhalation, so that 
the entire repertoire of learned discriminanda is available to the animal at all 
times for instantaneous access" (Sect. 3.4, para. 3). They propose this 
hypothesis in an unusually strong form, going on to claim that "without 
chaotic behavior the neural system cannot add a new odor to its repertoire of 
learned odors" (Sect. 4.4, para. 1). 

S&F's hypothesis raises the difficult issue that a data phenomenon, despite 
its correlation with a particular functional property, may not be necessary to 
achieve that functional property. When this is true, it is not possible to assert 
that the system has been designed to generate the property for that functional 
purpose. One can defeat the claim that the property in question is necessary 
by providing a mathematical counterexample of its necessity. 

Gail Carpenter and I (Carpenter & Grossberg 1987) have done just that. 
We have completely analyzed an explicit example of an adaptive resonance 
theory architecture, called ART 1, which shares many features with those of 
the Freeman data, and we have mathematically proved that this architecture 
has the following properties. ART 1 can self–organize, self–stabilize, and 
self–scale a sensory recognition code in response to an arbitrary, possibly 
infinite, list of binary input patterns. During code learning, it carries out an 
efficient self–adjusting memory search; after learning self–stabilizes, 
recognition occurs without search by direct access to the optimal learned 
recognition code. The course of learning is, moreover, remarkably stable; all 
adaptive weights, or long–term memory traces, oscillate at most once 
through time due to their dynamic buffering by system interactions. 

Such ART architectures have been explicitly designed to provide "the 
system with continued open–endedness and readiness to respond to 
completely novel as well as to familiar input, without the requirement for an 
exhaustive memory search" (S&F, Sect. 4.4., para. 2). To discover systems 
capable of coping with this "stability–plasticity dilemma," all the operations 
of ART systems have been developed to explain and predict difficult 
parametric data from a number of behavioral and neural paradigms: for 
example, Cohen and Grossberg (1986), Grossberg (1987a,b), Grossberg and 
Stone (1986). 

The key point for present purposes is that chaos plays no role in the 
extremely flexible and powerful learning and recognition performance of 



such a system. Hence chaos is not necessary to achieve the type of 
competence that has been uniquely ascribed to it by S&F. 

This argument does not deny that chaos has been measured in S&F's 
experiments. In fact, one of the important mathematical issues in neural 
network theory concerns the manner in which parameter changes within a 
single neural model can cause bifurcations between point attractors, limit 
cycle attractors, and bursting or chaotic attractors. In a book to which 
Freeman and I both contributed, I reviewed results concerning how suitable 
parameter changes could cause a cooperative–competitive feedback network 
to bifurcate from one with point attractors into one with limit cycle attractors 
of a type (standing waves) that could support an olfactory code (Grossberg 
1981). It was there suggested how a parameter called the quenching 
threshold (QT) could modulate the olfactory bulb's excitability in phase with 
the breath cycle; and it had been known for some time (Ellias & Grossberg 
1975) how such gain changes could cause a Hopf bifurcation from a point 
attractor into a limit cycle. The bifurcation described by S&F from a low–
energy state to a high–energy state with a narrow temporal spectral 
distribution is clarified by such results. So too is their observation that 
during early inhalation, intrinsic interaction strength is low, since one way to 
alter the QT is by altering the gain of system interactions, as occurs in ART 
I through its attentional gain control channel (Carpenter & Grossberg, 1987). 
When attentional gain control is low, cell populations can become 
decoupled. 

 These relationships between point attractors and limit cycle attractors 
delineate a family of models, all of which can support similar functional 
coding properties, with or without chaos. A formal model with such 
functional properties can also possess a tonically active point equilibrium or 
chaotic attractor in its rest state. Such a state of tonic activation can support 
one or more basic functional properties [e.g., maintaining a baseline activity 
that can be excited or inhibited without a loss of sensitivity, feeding signals 
into habituating chemical transmitters that can compensate for spatial 
fluctuations in the basal activation level and therefore keep the tissue in a 
spatially unbiased state (Grossberg 1983), or driving antagonistic rebounds 
in response to sudden offsets of sensory inputs (Grossberg 1980)]. All these 
functions can be carried out equally well by point or chaotic attractors. On 
the other hand, in a state of tonic activity but low attentional gain control, a 
physically realized network of cells can exhibit small but complex, even 
chaotic, fluctuations. 



In summary, just as one can conceive of slime mold aggregations that 
proceed continuously or in a pulsatile fashion through time as parametric 
variations of a single model, so too can one envisage a sensory coding 
model in which point or chaotic attractors support similar functional 
characteristics. Thus, although the issues raised by S&F are important ones 
for understanding cortical design, further argument is needed to support 
their strong claim for the necessity of chaos to achieve key functional coding 
properties. 

S&F have also raised the legitimate challenge that "no claim for firm and 
substantial understanding of large–scale neural circuitry can be advanced 
until the mathematical theorists of distributed dissipative systems have 
caught up with experimentalists, or until engineers have built hardware 
models" (Sect. 3.6, para. 6). The Carpen ter– Grossberg (1987) theorems 
have, in fact, provided such mathematical guarantees about the ART 1 
architecture, and these guarantees have encouraged engineers to start 
building an ART I chip in hardware. The kind of functional competence 
Skarda & Freeman have seen in their data is thus already helping to define 
the technological products of a biologically derived artificial intelligence. 
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Is chaos the only alternative to rigidity? 

Daniel S. Levine 

Department of Mathematics, University of Texas at Arlington, Arlington, 
Tex. 76019 

The Freeman laboratory continues to do exciting work in the neural 
representations of olfactory stimuli, as it has for almost 20 years. As always, 
the Skarda & Freeman (S&F) work is pioneering, both technically and 
philosophically. The changes in EEG patterns from a neutral to a reinforcing 
odorant stimulus are particularly significant. From the modeler's perspective, 
however, I retain some skepticism about the philosophical role of chaos that 
S&F propound. 



S&F write that "the process of state change leading to the unstructured 
chaotic domain is essential for preventing convergence to previously learned 
patterns, and hence for the emergence of new patterned activity" (Sect. 4.4, 
para. 2). Although the authors state this most strongly for the olfactory bulb, 
they clearly hope to apply the same principle to other sensory modalities, 
and have adduced some evidence for it in the visual system. 

In neural models of the "connectionist" variety, based on nonlinear 
differential equations, the capacity to respond to both novel and familiar 
inputs can exist even in the absence of chaos. In fact, learning often 
transforms novel inputs to familiar ones, with the consequent change in 
response properties. A series of articles by Grossberg (in particular, 1975; 
1980; 1982b) discusses a striving for balance between an attentional system 
(which biases the network's responses toward previously learned inputs) and 
an arousal system (which enables the network to overcome the attention 
system's rigidity when important new events occur). One mechanism for 
responding to novel events in these networks is the activity of populations of 
"mismatch detectors," which are actively inhibited by correspondence 
between the activity patterns in two separate on–center off surround fields of 
cell populations (such as one field representing an actual "bottom–up" 
stimulus event and another representing a "top–down" expectation of an 
event). This correspondence causes the total energy from the summation of 
the two fields to be sufficiently large to shut off the mismatch detector 
activity, which plays a role analogous to S&F's chaos. Like the chaotic EEG 
pattern, mismatch activity ensues if an unfamiliar pattern occurs, because 
the mismatch is not inhibited by correspondence. Hence, in Grossberg's 
model as in S&F's work, "an animal can classify an odorant as 'novel' with 
no greater delay than for the classification of any known sample" (S&F, Sect. 
3.4, para. 3). 

There is obviously no complete isomorphism between model network 
"minimal anatomies" (Grossberg 1975) and real neuroanatomies. S&F's 
point about the limitations of the connectionist model of Hopfield and Tank 
(1986) is well taken (Sect. 4.4, para. 4). Both in that model and in the more 
general model of Cohen and Grossberg (1983), theorems show that the 
network always converges to an equilibrium state representing a "decision" 
about short–term pattern storage. As S&F rightly point out, such behavior is 
too circumscribed for the actual nervous system. In fact, in real–time 
simulations of behavioral data, networks of that variety typically model only 
the short–time dynamics of a part of an entire network that includes both 



associative and competitive parts. An example of such real–time simulation 
occurs in the Pavlovian conditioning model of Grossberg and Levine 
(submitted) [also summarized by Levine (1986)]. 

Hence there is room for many years of research on how established neural 
network theories of specific processes concatenate into large–scale systems 
that actually reproduce significant data, in the olfactory cortex and 
elsewhere. Obviously, the chaotic EEG patterns in the resting olfactory bulb 
are important to the theory of that area. Whether the chaos is essential to the 
purpose of the bulb's function or epiphenomenal to other things that are 
essential, I cannot hazard a guess. The answer will be related to that of the 
larger unanswered question concerning what the EEG measures in general! 

Chaos in brains: Fad or insight? 

Donald H. Perkel 

Theoretical Neurobiology Facility, Department of Psychobiology and 
Department of Physiology and Biophysics, University of California, 
Irvine,  Calif. 92717 

The brain sciences, in their more reflective phases, are notorious for their 
immersion in analogy and metaphor (e.g., Arbib 1972). Traditional brain 
metaphors arise from technology. The nineteenth–century analogy between 
neuronal processes and undersea cables survives as modern cable theory. 
Subsequent technological metaphors have been based on telegraphic 
networks, telephone exchanges, control systems (Ashby 1952), digital 
computers (von Neumann 1958), holograms, and nonlinear networks 
(Hopfield & Tank 1986; Rosenblatt 1962; Rumelhart, Hinton & Williams 
1986). Each of these metaphors has contributed valuable insights, some 
more than others; none provides a global theory of brain function. 

Mathematical structures have also served as neural metaphors. 
Probabilistic examples include random–walk models for impulse–interval 
distributions (Fienberg 1974: Gerstein & Mandelbrot 1964; Sampath & 
Srinivasan 1977), stochastic pointprocess models of nerve–impulse 
sequences (Moore, Perkel & Segundo 1966; Perkel, Gerstein & Moore 
1967a; 1967b), and the binomial model for quantal release of 
neurotransmitter (del Castillo & Katz 1954; Zucker 1973). Other primarily 
mathematical theories include the formal neuron model of McCulloch and 
Pitts (1943), interacting oscillator theories of the EEG, thermodynamically 



inspired theories of interacting populations of nerve cells (Cowan 1968), 
information theory as a paradigm for brain function, tensors as the basis of 
cerebellar function (Pellionisz & Llinás 1979), and the "trion" theory of 
cortical cell assemblies (Shaw, Silverman & Pearson 1985), essentially a 
probabilistic cellular automaton (Wolfram 1984). 

Not all of these mathematical metaphors have fared well in the 
neuroscientific community. Random–walk models for impulse–interval 
distributions make nonunique predictions. The strict binomial model for 
neurotransmitter release yields misleading interpretations of experimental 
data (Brown, Perkel & Feldman 1976). Other mathematical models have 
been criticized on the grounds that the mathematical structure has dictated 
the biological assumptions or that the theory was leading the data. 

Recently, much attention has been paid to the modern treatment of 
nonlinear differential equations, including catastrophe theory, bifurcation 
theory, Poincaré maps, strange attractors, 1. chaos, and fractals. Biological 
applications have abounded, sparked by May's (1976) demonstration of 
chaotic behavior in population dynamics. Bifurcation theory has been 
applied to excitable cells (Chay & Rinzel 1985). Skarda & Freeman (S&F) 
make broad claims about the explanatory role of bifurcations and the 
emergence of "chaos" in the functioning of the olfactory bulb. Similar 
claims have been advanced for activity in invertebrate ganglia (Mpitsos & 
Cohan 1986) and in cardiac arrhythmias (Mandell 1986), among others. 

The question that immediately arises is whether the biological phenomena 
themselves dictate or justify the theory's mathematical structures. The 
alternative is that the beauty, versatility, and power of the mathematical 
approach may have led its aficionado to find areas of application in the spirit 
of the proverbial small boy with a hammer, who discovers an entire world in 
need of pounding. Is bifurcation theory merely a trendy framework for a 
Procrustean approach to nervous–system function? Does it make any more 
sense to say that the olfactory bulb makes chaos to make sense of the world 
of smell than it does to say that the cerebellum is a tensor, or that the 
hippocampus is a map, or that the visual system is a Fourier transformer, or 
that cognitive processes are executions of computer programs? Is the theory 
of familiar and strange attractors a natural way of looking at neurobiological 
phenomena – at the olfactory bulb in particular – or is it a method in search 
of a roosting place? 



At the cellular level, the use of bifurcation theory by Chay and Rinzel 
(1985) clarifies the behavior of their system in a plausible and rewarding 
way; it enriches our insight. However, the bulb is immeasurably more 
complex, far less perfectly characterized, and harder to measure than the 
single cell; bifurcation analysis of the bulb is necessarily more risky, less 
readily quantifiable, and more subject to distortion. 

Assuming that surface EEG measurements sufficiently well represent 
mitral–cell firing rates, what S&F have sketched is not a theory of odor 
recognition and learning, or of olfactory bulb function, but rather an outline 
of a research program to produce and refine such theories. Their 
experimental findings, although far from conclusive, in fact make their 
argument plausible, in the context of the behavior of other nonlinear 
dynamic systems. 

S&F correctly point out that connectionist models can generate chaotic 
behavior if artificial constraints on connectivity are lifted. A serious problem, 
however, remains: How does the system read out the information – that is, 
the identity of a familiar odorant – when its "representation" is so dynamic 
and volatile? The answer must lie in the anatomy and physiology of the bulb 
and more central structures, but the working principles of specific odorant 
identification remain to be elucidated. 

Do the operating principles of the olfactory system hold for other sensory 
systems that have highly topographic anatomical representations? It may be 
that widespread chaos and selforganization are peculiar to the olfactory 
system or the brain stem, and that topographic systems "use" chaos in a 
much more restricted fashion. 

Inhibition, as S&F point out, is essential to the operation of the system. 
Unaccountably, they mention the strengthening of excitatory synapses but 
not inhibitory synapses, although Wilson, Sullivan, and Leon (1985) 
describe increased inhibition in mitral cells after olfactory learning. It seems 
prudent to impute plasticity to inhibitory synapses as well. 

S&F lament the weakness of the purely mathematical methods. The 
inescapable remedy is to mount a series of increasingly realistic, large–scale 
simulations of the system. The chief contribution of digital computers to 
theoretical neurobiology may be as tools for analysis and synthesis, rather 
than as marginally appropriate metaphors. 



Finally, what is most attractive about S&F's theoretical approach is the 
biological flavor of its predictions. The picture of a spontaneously active 
bulb, goaded by sensory input into chaotic–appearing nonrecurring 
spatiotemporal patterns of activity, was sketched almost half a century ago: 
"millions of flashing shuttles weave a dissolving pattern, though never an 
abiding one; a shifting harmony of subpatterns" – the "enchanted loom" of 
Sherrington (1940; rev. ed. 1953, p. 178). When the skeletal theory has been 
fleshed out with more fine–grained experimental evidence and 
correspondingly realistic simulation studies, it may well be that bifurcation 
theory and chaos, arising out of "connectionist" models, may provide a 
cohesive, unifying, and apt theory for widespread aspects of brain 
functioning. 

Connectionist models as neural abstractions 

Ronald Rosenfeld, David S. Touretzky, and the Boltzmann Group 

Computer Science Department, Carnegie Mellon University, Pittsburgh, Pa. 
15213 

Skarda & Freeman's (S&F's) findings and interpretations provide strong 
support for the connectionist paradigm. They clearly illustrate the 
importance of distributed representations and dynamic system theory for 
understanding computation in the brain. The paper concludes by criticizing 
various aspects of current connectionist models. It is this criticism that we 
wish to address. 

Connectionist models are chiefly concerned with computational aspects of 
cognitive phenomena. At the current stage of this research, simplicity is 
often preferable to biological fidelity. We realize that the brain is likely to 
employ mechanisms beyond our present computational taxonomy, let alone 
our understanding or mathematical tools, but we nonetheless believe that 
current models, crude though they may be, advance the understanding of 
cognitive systems and contribute to the emergence of a new taxonomy. One 
should not confuse claims about the accuracy of certain connectionist 
models vis–á–vis real nervous systems with claims about their 
computational adequacy or scientific utility. S&F appear to have made this 
mistake. 

S&F's target article repeatedly emphasizes the superiority of dynamic 
attractors over static ones, holding that connectionist models are inadequate 



since they do not have the former. But this is not so; a Boltzmann machine 
(Ackley et al. 1985) annealed down to a temperature slightly above its 
freezing point is manifesting a dynamic attractor state very similar to the one 
advocated by S&F. More important, the target article fails to demonstrate 
any computational advantage of dynamic models. Connectionist models are 
abstractions. Stationary patterns of activity in these models need not 
correspond to stationary patterns in the brain, just as connectionist units and 
their weighted connections need not correspond one–for–one with real 
neurons and synapses. Connectionists are perfectly happy to stipulate that 
the stable states of a Hopfield net (Hopfield 1982) or a Boltzmann machine 
are abstractions of dynamic attractors in the brain. We will abandon models 
with simple point attractors only if dynamic models can be shown to have 
useful computational properties that static ones lack. We have not yet seen 
the evidence that could support such a claim. 

S&F maintain that chaotic behavior is essential for learning, but they do 
not make clear what role chaos is supposed to play in the learning that takes 
place in the rabbit olfactory bulb. The target article claims that a chaotic 
well – a "don't–know" state – is a prerequisite for the system to learn to 
recognize new odor categories. But which of the characteristics of chaos are 
necessary to the role it plays in generating new attractors, and which are 
irrelevant? S&F's article does not answer this key question. 

S&F further criticize connectionist models because of their need to be 
externally reset after reaching a stable state. But the olfactory bulb does in 
fact settle into a single (albeit dynamic) state that is computationally 
equivalent to a corner of a hypercube; and it does not spontaneously escape 
from one dynamic attractor to other interesting ones. The return to the 
chaotic well (cf. the center of the hypercube) that takes place at exhalation in 
the rabbit appears to be precisely a forced reset action. 

S&F next advise connectionists to give up the view of neural networks as 
pattern completion devices. They maintain that no pattern completion 
activity takes place in the olfactory bulb, since its output is a coherent global 
state generated from within, not merely a completed pattern within one 
nerve cell assembly (NCA). But to say that no pattern completion takes 
place in the olfactory bulb is to mix levels of description. Receptor cells 
send their pulses to the olfactory bulb, which in turn settles into a 
dynamically stable state – one of several preexisting possibilities. This is 
precisely what pattern completion is about! Stationary pattern completion 



activity in connectionist models is an abstraction. It need not correspond to 
stationary pattern completion in the brain. On the other hand, the 
"destabilization" paradigm advocated by S&F is merely a metaphor, and will 
remain so until it is supported by a concrete computational model. 

The target article rightly points out that feedback mechanisms in the brain 
are far richer than those used in many connectionist models. But it also 
maintains that the "long delays, temporal dispersions, and spatial 
divergences" (Sect. 4.3, para. 2) present in the brain arc necessary for the 
production of global behavior. in order to extend connectionist models to 
include these features, one must first have some idea of their essential role. 
There is no (computational) point in blindly simulating neural circuitry 
without first having an analytical handle on the role of the elements involved. 
By starting our analysis and simulation with minimal assumptions, we make 
sure that only essential features of the system will be admitted into our 
models. 

Finally, we would like to point out some technical difficulties in the use of 
nerve cell assemblies to explain the formation of stable states. It is 
postulated that the NCAs are responsible for the selection of the basin to 
which the system bifurcates. According to this hypothesis, each NCA 
corresponds to a specific basin, and therefore to a specific known odor. The 
neurons in each NCA are supportive of one another, so that activating only 
some of them will cause the whole assembly to become active. How, then, is 
similarity between odors accounted for in this model? Do NCAs of two 
similar odors share neurons? If so, the presence of the first odor will activate 
its associated NCA. The latter will in turn activate the other NCA, 
irrespective of whether the odor it stands for is present. Moreover, what 
happens when a combination of two or more familiar odors is presented to 
the receptor cells? Are several NCAs activated simultaneously? What kind 
of basin is created, and how is it related to the basins of the component 
odors? What state does the system settle into eventually? The target article 
does not address these issues. 

Chaos can be overplayed 

René Thom 

Institut des Hautes Etudes Scientifiques, 91440 Bures–sur–Yvette, France 



More than a century ago the German mathematician B. Riemann, in his 
little–known philosophical writings, addressed the mind–body problem as 
follows: "When we think a given thought, then the meaning of this thought 
is expressed in the shape of the corresponding neurophysiological process." 
It is comforting to see this old idea unearthed after hard experimental work, 
and put forward by Skarda & Freeman (S&F) as a major discovery. (Here, 
of course, "meaning" has to be understood as a nonverbal conceptualization 
of smells in the rabbit's psyche.) First, it seems to me, there is a gap to be 
filled in the findings of S&F: To what extent does the shape of the EEG 
amplitude on the bulb depend on the experimental procedure – in particular, 
on the nature of the conditioning stimulus? Would the pattern observed for a 
given odorant when the subject is conditioned, say, by subsequent electric 
shocks, be the same as the one observed when reinforcement is obtained by 
giving water to the thirsty subject? The rather rough model offered for the 
underlying general dynamics is very suggestive (S&F's Figure 11), but the 
idea that for each of these attractors (or rabbits' pseudoconcepts) there 
should exist a specific triggering NCA (nerve cell assembly) seems to me 
another instance of what A. N. Whitehead (1960) called the "fallacy of 
misplaced concreteness" (p. 11). For if, as S&F claim, there exists in 
principle a virtual infinity of such attractors (due to the infinite fecundity of 
"chaos"), then this would require an infinite number of distinct NCAs, 
something difficult to accept. 

Here one sees clearly the limits of neurophysiological research. When one 
tries to describe the anatomical constraints imposed by some specific 
functional behavior on the pbysiological level, "connectionist models" 
ultimately mean very little – namely, that a neural mass exhibits internal 
symmetry of a geometric type (translation, rotation, etc.) and that this 
symmetry may lead to corresponding "first integrals" of the associated 
neural dynamics. S&F give for the word "chaos" the definition once 
proposed by Ruelle–Takens (1971): differential systems which display the 
property of sensitivity to initial data. In this they follow the present fashion, 
to which I do not personally subscribe. "Chaos" and "chaotic" should be 
reserved for systems that cannot be explicitly described either quantitatively 
or qualitatively (there are plenty of them). Hence, such chaotic systems have 
no equations. Systems defined by equations have attractors (the precise 
mathematical definition of which may in fact be very difficult). It is to be 
expected that after the present initial period of word play, people will realize 
that the term "chaos" has in itself very little explanatory power, as the 
invariants associated with the present theory – Lyapunov exponents, 



Hausdorff dimension, Kolmogoroff–Sinai entropy Guckenheimer & Holmes 
1983) –show little robustness in the presence of noise. 

The same misuse of terminology may be seen in S&F's systematic use of 
"self–organizing process. " By that, I suppose, they mean a process that, 
starting from a given set Γ of initial data, will follow a specific trajectory Ω 
to a very good approximation, at least for a given time span [or, more 
generally, a process exhibiting spatially invariant configurations, as for 
Rayleigh (1916)–Bénard (1900) convective patterns]. In such a case, the old 
concept of "chreod," once proposed by C. H. Waddington (1957), would do 
the same job, and could be given under the notion of "morphogenetic field" 
a very precise mathematical formulation. 

All in all, I would say that the main interest of the target article lies in the 
physiological description of the effects of Pavlovian conditioning on a given 
sensory input: formation of a highfrequency peak, spatially modulated in 
amplitude according to a specific pattern on the bulbar surface. This 
dynamical finding suggests that the propagative character of Pavlovian 
conditioning – the "prégnance" I of the stimulus – could be explained as a 
purely dynamical effect of resonance. 

NOTE 

1. The French word "prégnance" was proposed by this commentator as a property of an 
externally perceived form that is the opposite of "saillance" (saliency). 

Cognition as self–organizing process 

Gerhard Werner 

Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa. 15213 

Cognitivists of the representation–computation persuasion could, with some 
justification, support their case by pointing to the absence of 
neurobiologically viable and conceptually consistent alternative theories. 
The experimental findings and the elegant interpretations presented in the 
target article weaken this argument substantially. Although admittedly 
limited to "preattentive cognition" and not incorporating aspects of attentive 
stimulus exploration, Skarda & Freeman's (S&F's) model contains elements 
of potentially more general relevance, which are awaiting further elaboration 
of mathematical theories of distributive, dissipative systems, and more 



extended validation of the correspondence between brain electrical events 
and stimulations according to the operational principles proposed; nor is 
there anywhere else in the brain evidence for the occurrence of stimulus–
related high–amplitude bursts of oscillatory activity comparable to the 
olfactory EEG on which the interpretation of the experimental data is based. 
Moreover, within its own domain, the model presupposes a number of 
modulatory neurochemical processes and synaptic connections that await 
empirical confirmation before conclusive validation is possible. 

Notwithstanding this current restriction in generality and conclusiveness, 
the concepts developed in the target article raise tantalizing issues by 
sketching the outlines of an internally consistent and coherent model of 
perception and cognition that eliminates some of the solipsistic implications 
of representational cognitivism. 

The evidence assembled by S&F attributes a primary role to cooperative, 
self–organizing activity in neural structures, which can individuate 
situation–specific, spatiotemporal profiles of neural activity, contingent on 
past stimulus exposure and behavior–regulating expectancies. The 
conceptual implications of this position merit underscoring: History is not 
represented as a stored image of the past; nor is the present a mirror of the 
environment. Instead, environmental events are specified by states of neural 
activity that are the result of the neuronal system's internal organization and 
dynamics. In this sense, the neural structure uses information to create its 
own internal states, which acquire meaning: The internal states are neuronal 
system's own symbols, as these states stand in a regular relation to events in 
the world and signify potentials for action. This distinction highlights the 
departure from current cognitivism, for which meaning is assigned to 
symbols by an observer. It seems that Dretske (1986) drew a similar 
distinction in another context. 

Once symbols are viewed as the system's own creations, any reference to 
representations becomes superfluous; Occam's razor can unburden us of the 
Trojan horse that was smuggled from the land of Artificial Intelligence into 
Neuroscience. Perhaps the protestations that representations exist only in the 
mind of the observer who jointly beholds an environment and an observed 
organism (brain) will at last be heard (Maturana & VareIa 1980). 

The overriding importance of the work reviewed by S&F lies, in my view, 
in the fact that it sketches the outlines of a neurologically based approach to 



cognition as an alternative to the tenets of current cognitivism. This in itself 
represents an important contribution in proposing a viable alternative to 
representational–computational cognitivism, and in suggesting 
modifications of current connectionist models. The target article sets the 
stage for a "pluralistic methodology," which P. Feyerabend (1975) considers 
a vital element in support of competitive argumentation among theories, 
forcing each into greater articulation, and all of them contributing to greater 
clarity. 

 

Authors' Response 

Physiology: Is there any other game in town? 

Christine A. Skarda and Walter J. Freeman 

We thank the commentators for taking the time to read, think about, and 
critically respond to our target article. The material we presented is diverse 
and difficult, despite (or perhaps in part because of) our effort to simplify it 
and make it accessible to researchers in other disciplines. Our exposition and 
our hypotheses extend from basic physiology through behavioral and 
cognitive theory, relying on mathematical techniques for quantitative 
description and prediction. The commentaries touch on all these levels and 
we have grouped our responses accordingly. Our overall conclusion is that 
our proposed view of the brain and the dynamics by which it generates 
behavior emerge intact from this scrutiny. However, we think that there is a 
problem of miscommunication that stems from failure of physiologists, 
psychologists, and modelers alike to follow through with careful 
consideration of the logical consequences of both new and longstanding 
findings on brain function. 

Meetings, symposia, and workshops on neural networks and 
connectionism deriving from brain studies have now become commonplace. 
Yet we believe that physicists, engineers, and mathematicians have little 
understanding of the functional architecture of networks of real neurons, and 
that neural networking is just the newly derived technical capability to 
handle large arrays of interconnected elements with dynamic properties the 
that, although simple for the element, are endlessly complex for the array. 
Underlying this work is a weak description of a nervous system that 



bypasses the basic questions about the essential character and organization 
of brains. Physiologists and anatomists, however, are equally deficient in 
failing to face the epistemological and philosophical consequences of their 
findings and conclusions and in interpreting them in terms other than those 
they have inherited from reflexologists. 

Our main point lies beyond level confusion, misuse of terminology, and 
misconstrual of the tenets of cognitive science; it is that brains don't work at 
all in the way everyone, including ourselves, expected them to. We asked a 
simple question: What is the physical form in which sensory information is 
registered in the olfactory bulb? The answer we found – namely, a spatial 
pattern of chaotic activity covering the entire olfactory bulb, involving 
equally all the neurons in it, and existing as a carrier wave or wave packet 
for a few tens of milliseconds – is orthogonal to the axes of virtually every 
explanatory system we are aware of. It is therefore not surprising that some 
of our descriptions were misunderstood, and that some of the comments 
should be tangential to what we wrote. The full implications take time to 
sink in, as do the lessons to be learned for a new technology. 

What emerges from our work, as recognized most clearly by Werner, is 
the conclusion that the concept of "representation" (e.g., symbols, schemata, 
codes, maps) is unnecessary as the keystone for explaining the brain and 
behavior. This is because the dynamics of basins and attractors can suffice 
to account for behavior without recourse to mechanisms for symbol storage 
and invariant retrieval, "teachers" in learning devices, error–correcting 
feedback, comparators, correlators, associators, and the fine–grain point–to–
point topographic connectionism that is required for their effectuation. The 
nervous system tolerates (indeed thrives on) an enormous degree of what 
can only be called sloppiness in its design, construction, and maintenance. 
This is difficult for engineers and logicians to come to terms with, even 
when it is dressed up as chaos; but as Garfinkel (1983), Holden (1986), 
Rössler (1983), Shaw (1984), and others who write about chaos have 
pointed out, it is a quality that makes the difference in survival between a 
creature with a brain in the real world and a robot that cannot function 
outside a controlled environment. 

In sum, cognitivists have written repeatedly for some years that rule–
driven, symbol–manipulating devices are the only realistic hope for 
mimicking and explaining behavior. We submit that the brain can do better. 



Psychology: Insight or level confusion? Several commentators have raised 
the issue of levels of description. Have we confused different levels of 
description? Is our view hopelessly muddled? We think not. Barnden's 
comments are especially instructive in this regard. 

Barnden does not contest our model of olfactory functioning as a 
distributed, self–organized process whose functional architecture resembles 
current connectionist models, but he raises two important points. First, he 
points out that our model of relatively low–level sensory neural mechanisms 
cannot be generalized without further data and argument to higher–level 
cognitive processes. We agree, but Barnden goes on to claim that because 
"'symbol manipulationists' have in any case always presumed that low levels 
of perception are at least largely based on specialized mechanisms that are 
probably not to be regarded profitably as manipulating symbols in any 
conventional sense," we consequently have nothing new to offer to the 
debate. It is not clear which symbol manipulationists Barnden is referring to 
here, but we believe that he is mistaken. First, the neural processes captured 
by our model (after the first synapse) cannot be equated with simple 
transducer processes or with reflexes, both of which have traditionally been 
viewed as nonsymbolic. Second, it is not true that symbol manipulationists 
hold that input analysis, even at a relatively low level, does not involve 
symbolic manipulation. On the contrary, input analyses taking place after 
the transducer level have been considered paradigmatic examples of 
symbolic processing, whereas more central or higher cognitive processes 
have eluded analysis in similar terms. As one prominent proponent of the 
symbol–manipulation view says, "Input systems are computationally 
elaborated. Their typical function is to perform inference–like operations on 
representations [i.e., symbols] of impinging stimuli" [Fodor 1983, p. 83; see 
also multiple book review in BBS 8(1) 1985]. This is precisely the view that 
our model challenges. 

Barnden also raises a more fundamental issue: Even if the lower–level 
sensory mechanisms could, as we claim, be explained in terms of 
nonsymbolic processing, what is to stop him and others from viewing the 
patterned output to higher cortical areas or the processes taking place in 
those areas in terms of symbol manipulation? Can the dynamic patterns of 
output from the olfactory bulb be the symbols Barnden feels compelled to 
look for in the brain? It is significant that Barnden is persuaded by our 
model to depart from the conventional view of symbols as strings of discrete 
bits of information that encode distinct physical properties, and to introduce 



what he refers to as "a certain amount of 'fuzz."' The patterns he wants to 
equate with symbols are context–dependent–, at best they are roughly 
correlated with events in the world, as he admits. As a result, crucial aspects 
of symbolic processing (e.g., decompositionality and inference) are 
jeopardized. We do have a good understanding of logical operations on 
conventional symbols, but we have no model for logical operations on 
context–dependent ones. Of course, one could still refer to these patterns as 
symbols, but what does the use of this term now buy us? Without the ability 
to perform conventional logical operations of the sort used by traditional 
symbolic processing, the use of the term "symbol" for the kinds of patterns 
we find in the olfactory system is not doing the work it did in models 
developed by the symbol manipulationists, and in the end it is misleading, 
because researchers are led to view the functional architecture of the system 
in a way that is not compatible with the distributed processing carried on by 
neural networks. 

Earle grasped an important point missed by some of our commentators 
(Barnden and Brown): What we proposed on the basis of our data and the 
ensuing model is that the functional architecture of brains resembles the 
distributed, self–organized processes of connectionist models rather than the 
rule–driven symbol–manipulating processes characteristic of digital 
computers. Contrary to an apparently popular assumption, physiologists are 
not so naïve as to conclude, because they don't find symbols floating around 
in the neural tissue, that the brain is not a symbol–manipulation system. We 
agree with Barnden and Brown that a machine–level claim would be 
ineffectual against this position. But our model is pitched at the level of the 
functional architecture of the system: Our point is that brains use the 
functional architecture of distributed networks similar in many ways to 
present–day connectionist models. Connectionist models are not plausibly 
conceived of as symbol–manipulating, rule–driven systems; so why, if 
brains use a similar form of information processing, are the latter so 
construed? 

We disagree, however, with Earle's further claims that connectionist 
models promise a "noncognitive" account of behavior, and that information 
processing requires symbols and rules. Connectionist models are not 
attempts to provide a noncognitive account of behavior, if by "noncognitive" 
is meant not having to do with cognitive processes. Connectionist models 
are explicitly cognitive: Such models deal with mental processes (e.g., 
pattern recognition and completion, generalization, discrimination, 



associative memory) and the mechanisms responsible for cognition. 
Admittedly, our model and connectionist models in general do not appeal to 
rules or symbols, but this is not equivalent to the claim that they are 
noncognitive. As has been pointed out, connectionist models, although 
exhibiting regularities in processing information, do not apply rules; nor is 
the "currency" of such systems symbols (Rumelhart, McClelland & PDP 
Research Group 1986). But it is incorrect to equate information processing 
with rule–driven symbol manipulation. The point of connectionism is that a 
distributed system of interacting elements is able to produce behavior that 
was previously thought to require rules and symbols. Surely the appropriate 
response is to ask what makes Earle and others think that rule–driven 
symbolic processing is more cognitive than connectionist models. The 
connectionist challenge is not to cognitive models per se, but to a specific 
class of cognitive models based on the digital computer. 

We accept Brown's concession that we did not wittingly seek to mystify 
or intimidate our readers. We suggest that our argument is not so confused 
as his quotations out of context might imply, and although we do not think 
we are "naïve materialists," we do take brain functioning and the constraints 
it places on our model seriously. Unlike Brown, we don't view our model as 
"merely physiological. " We suspect that there is a lot packed into Brown's 
use of the word "merely" here – specifically, a commitment to the 
functionalist view that what neuroscience tells us about is irrelevant to the 
concerns of cognitive psychology. The underlying assumption is that 
physiology is irrelevant to computational issues because it is concerned only 
with the specifics of structural implementation (neurons, membrane 
constants, neurotransmitters, and so on). But this is not true. We feel that our 
research demonstrates that physiologists need not be (and, in fact, are not) 
saddled with a function–structure distinction that once and for all limits their 
research project to structural minutiae: Admittedly we investigated the 
structural properties of neural nets, but we did so in the context of viewing 
these networks as functional units whose input–output dynamics are 
captured by our model. And contrary to the functionalist assumption, our 
research at the physiological level led us to produce a theory of its 
functional organization. We suggest that the fashionable dismissal of 
neuroscience popularized by a functionalism tied to the symbolic form of 
information processing is too simplistic in its understanding of neuroscience 
as practiced by researchers. (Parenthetically, our experience has been that, 
contrary to Brown's assertion, substantial numbers of theorists believe that 
the functional architecture of neural activity is identical to that of digital 



computers; but perhaps our dismal experience is attributable to cultural lag, 
and fewer people still think this way than we have inferred. Perhaps.) 

What about the role of modeling, an issue raised by Brown? As a theory 
of whole brain function that purports to explain the changes in mass action 
of neurons that accompany learning new patterns of behavior, our theory 
spans three levels. As such it must provide the conceptual framework for the 
display and verification of neurophysiological correlates of behavior. And as 
a model of "the integrative action of the nervous system" (Sherrington 1906), 
it must describe or simulate the dynamic functional properties of the nervous 
system. Finally, because the theory attempts to explain behavior as well as 
brain function, it has failed if it does not yield neurobehavioral correlates or 
lead to methods for simulating animal and human behavior. 

In previous discussions (Freeman 1981) we have adopted the tenet 
advanced by Craik (1952) that the essence of explanation lies in simulation. 
To understand some event or process, according to this view, is to generate 
or operate a model of it. To answer Brown, we think this can be done for 
our theory by using differential equations that replicate the 
electrophysiological patterns to make models that perform the computational 
operations we attribute to the brain regions we have studied. We suppose 
that it makes little difference a priori whether the models are made with 
hardware or software, although as experimentalists (naïve materialists?) we 
prefer to work with the former. Brown is surely as aware as we are of the 
pitfalls in complex programming and numerical integration; in this respect 
there is no advantage over hardware. In this use the computer serves as an 
analog, and therefore as a simile, not a metaphor. But we view the software 
as a helpful approach in the design of a device, just as a blueprint is a stage 
in the design of a tool. 

We accept Barnden's criticism of our use of top–down and bottom–up; 
the point we wished to make is that our model resembles connectionist 
models in being a system that exhibits regularities and processes information 
without being rule–driven and manipulating symbols. Barnden also raises a 
physiological issue: He asks why we have not performed experiments 
involving the simultaneous presentation of several odors. We have not done 
this because it is inappropriate in our system. In olfactory physiology we 
have the problem of chemical reactions upon mixing odors, of new odors 
arising (e. g., butter and vanilla give "cake"), of optimizing the ratio of 
concentrations, of solubility coefficients, and so on. These factors prohibit 



the kind of experimentation Barnden proposes for olfaction in animals. Our 
theory of functional architecture should first be tested in vision or audition; 
if it is found to be valid, his proposed experiments can be done with relative 
ease. 

The last word in our dialogue with psychologists we give to Werner. We 
feel that he has done a major service by expressing in clear and concise 
language the major theoretical implications of our target article for cognitive 
science. Although we originally undertook our work in order to find 
experimental support for the symbol–manipulationist view of information 
processing (Freeman 1983a), the relationship we established between 
measurements of behavior and electrochemical events in the nervous system 
forced us to adopt an alternative model (Freeman & Skarda 1985). This led 
us to the view that brains have a capacity to learn using cooperative activity 
in neural networks without anything like what the computational model 
based on digital computers had thought necessary. In our neural model, as in 
connectionist models, there is no discrete semantic interpretation given to 
activity in a neural net or to elements of the net; this activity varies not only 
with the presence and absence of particular environmental events, but also 
with the context. We did not come to this view without spending several 
frustrating years of inspecting EEG records and unit activity. 

As Werner points out, the concepts of "representation" and "symbol" are 
deeply rooted in the minds of cognitive scientists; they will be eliminated or 
replaced only by the acquisition of a substantial body of data showing that 
they are unnecessary to explain behavior. Unlike Werner, however, we don't 
think that referring to these neural patterns as the "neuronal system's own 
symbols" is helpful. The distinction we wish to emphasize is not that 
between the first–person and third–person points of view. Our point is that 
the system can produce adaptive, ordered, cognitive behavior without using 
functional architecture based on rules and symbol manipulation. The neural 
patterns of our model are not symbols for the system because a distributed 
network doesn't require symbols to produce behavior. 

Physiology: What's in a brain? The commentaries from physiologists 
raised several issues: the relationship of our theory to other theories, 
questions about the physiological role and scope of chaotic activity in the 
brain, and specific questions about the physiology of the system. We 
respond to each of these in turn. 



First a word or two about the relationship of our theory to other theories: 
What is really new about our work? We thank Boynton for mentioning the 
pioneering work of Demott (1970). We have cited it in previous reports and 
could add to the list of pioneers in this field Walter (1953), Lilly and Cherry 
(1955), and Livanov (1977). Although these projects were able – using 
ingenious and imaginative devices to analyze huge quantities of data – to 
show that spatiotemporal patterns exist in brain activity, technical 
limitations prevented them from reliably reproducing or understanding the 
significance of the observed patterns. 

Our claim to priority is not for the detection and display of patterns, nor 
for the technologies required for transduction, processing, and display. The 
electrode array is a journeyman device when seen in company with the 
exotic apparatus for optical, magnetic, and biochemical transduction, and 
our use of the digital computer is minor league in comparison with uses by 
meteorologists and geologists. Our primary accomplishment is the 
systematic measurement of repeated blocks of data, decomposition of the 
data into sections, the systematic testing of each of those sections for 
information relating to behavior, and the statistical validation of the results. 
By following our prescription we believe that others can find the same or 
similar patterns. Our priority, then, is more like that of Columbus than the 
Vikings: Although not the first to discover the New World, he was the first 
to show others how to get there and back reliably. It is this reliability of the 
technology to the multivariate system, and in particular the demonstration of 
behaviorally significant regularities in the spatial dimensions of the data, 
that forms the substance of our claim to priority. 

Access to the digital computer is not the only basis for the difference 
between "seeing" that spatial patterns exist in the brain and comprehending 
their significance. What is crucial is the development of the necessary 
software. Early on we presented cinematic displays of the space–time 
patterns of olfactory EEG waves from electrode arrays (Freeman 1972), but 
the ability to demonstrate odorant specificity required that we devise the 
tools for measurement, a task that took 12 years to complete. Unfortunately 
the available theory of neural action in perception was not merely unhelpful, 
it was misleading. We made repeated attempts without success to locate "hot 
spots" of the kind purportedly revealed by 2–deoxyglucose, or to find 
information in phase or frequency patterns. Eventually, the key to the 
problem was found not in the display techniques or in the theory of 
nonlinear dynamics; it lay in the development of adequate techniques of 



measurement, including use of a behavioral assay to validate those 
techniques (Freeman 1987b). 

We wish to point out in this connection that three technical aspects of our 
procedures are crucial. One is the use of spectral analyses in the temporal 
and spatial domains of EEG recordings as the basis for determining 
digitizing intervals and interelectrode distances for array recording. This, 
combined with theoretical analyses of the biophysical properties of the 
neurons generating the EEGs, provided the basis for the separation of 
"signal" from "noise" by filtering. A second is the use of a behavioral assay 
and the repetition of analytic procedures while optimizing the filter 
parameter for the extraction of the desired information. The third is the 
detailed analysis of the variance that led to our realization that the 
significant spatial patterns of EEG potentials were best seen after 
normalization of the amplitudes by channel. 

Several commentators, including Corner & Noest, raise the issue of the 
relationship of our model to connectionist models. At the risk of repeating 
our target article, we concur with those commentators who pointed out that 
our approach is inherently "connectionist" and indeed "must be considered 
as constituting simply a possible improvement within that category" (Corner 
& Noest); our criticisms of other species within the genus should not be 
construed as a denial of our membership. As Barnden points out, our model 
is an "extension of present–day connectionism." We recognize that in this 
rapidly evolving field, some of the criticisms we directed against other 
connectionist models are already out of date. Nevertheless, we find that too 
many connectionists are preoccupied with the structural properties of their 
models (e.g., relationships between the numbers of nodes and the memory 
capacity of a net) to the exclusion of the description and analysis of the 
dynamics. The tested models that we are at present acquainted with and that 
can be described in terms of basins and attractors are endowed with 
equilibrium attractors. Our results require that these be replaced with limit–
cycle and chaotic attractors if they are to be relevant to the brain and the 
behavior it controls. In one sense this is a small step, but in many ways it is 
very difficult. Corner & Noest note that an extensive literature already exists 
on the properties of spatially distributed coupled oscillators; they sketch 
briefly an exciting possible route for further description and understanding 
of this baffling but vital system. We believe that their particular example 
(concerning the expression of phase patterns into spatially nonuniform 
amplitude patterns owing to spatial smoothing) may be directly relevant to 



bulbar EEG analysis, but not in the manner they suggest. As we have 
reported (Freeman & Baird, in press; Freeman & Viana Di Prisco 1986b), 
the phase pattern appears as a conic gradient in spherical coordinates, and 
the local differences in EEG amplitude are closely related to local 
differences in subsurface neural firing rates that are not subject to spatial 
smoothing by the volume conductor. We hope that Corner & Noest will 1. 
start delving into the complexities of structurally inhomogeneous models," 
and we ask them what information they need to have "specified more 
precisely" in order to allow such improved models" to be developed. 

 In a more general vein, Perkel asks whether our use of nonlinear 
dynamics and bifurcation theory is metaphorical [the brain is (like) a . . . ] or 
operational [the dynamics of the bulb is described by the equation f(x) = . ]. 
We believe that it is operational, because our equations are constructed in 
accordance with the anatomy and known biophysical properties of 
component neurons and their interconnections, and are solved with 
boundary and initial conditions that conform to the gross anatomy and the 
neural input. We adjusted the parameters until the solutions to the equations 
conformed to the observed and measured patterns of neural activity, and we 
did not accept solutions for which the required parameter values were 
anatomically or physiologically unrealistic. In this respect our "theory" is no 
more or less metaphorical than any other use of descriptive equations 
properly selected. Superficially, at least, experimentalists can afford to be 
both skeptical and cavalier about theories: If a tool seems promising, we 
learn to use it; if it works, we continue to use it; if not, we find another. In 
the olfactory system we find that the language of basins and attractors helps 
us to assemble and simulate many aspects of patterned neural activity. The 
methods provide insights for further research, evidence that other parts of 
the cerebrum may operate in closely related ways (Freeman & van Dijk, 
submitted), and ways to test this hypothesis. What more can one ask of 
theory? 

Babloyantz points out that ours isn't the first physiological account to 
postulate chaotic activity based on EEG recordings. She provides a useful 
list of references to recent work on the dimensional analysis of putative 
chaos in human scalp EEG recordings, to which we add work by Nicolis 
(1985b) and Nicolis and Tsuda (1985) on chaotic dynamics of information 
processing by the brain. (Perkel, by the way, asked whether chaos is unique 
to olfaction. Babloyantz and others have clearly demonstrated that it is not.) 
These and related studies have established that low dimensions appear in 



analyses of records from subjects in deep sleep and in certain forms of 
epilepsy. But in these studies the estimated dimensions of waking EEGs are 
so high that the distinction between chaos and noise or a mix of the two 
becomes blurred (see commentary by Thom). A further difficulty with these 
studies is that the single channel of the scalp E E G is undefined with respect 
to the numbers of functional entities (and therefore of dimensions) that 
contribute to the record (as distinct from our deliberate restriction to activity 
from a single entity); and the scalp EEG is subject to much stronger spatial 
and temporal smoothing than pial recordings, leading to artifactual reduction 
in the apparent dimension. So, although our research is not the first to 
postulate chaotic activity based on EEG recordings, we do believe our work 
makes important new contributions by eliminating some of these difficulties. 

Contrary to Babloyantz's assertion, our main point is not that brain 
activity conforms to the dynamics of chaos, but that the brain organizes its 
own space–time patterns of function and thereby its own structure. We 
postulate that it generates chaotic activity as an essential precursor to the 
emergence of ordered states. Far from being misleading, we think that our 
statement that "chaos is a controlled noise" is appropriate. The patterns of 
activity we observe in the bulb have commonality of waveform over cortical 
regions comprising hundreds of millions of neurons, with phase gradients 
and spectral distributions (both temporal and spatial) that are held within 
narrow limits; amplitudes (root mean square) that are regulated precisely in 
accordance with motivational state; and, above all, the maintenance of 
sustained basal activity without recurring spatial patterns. The generator of 
this activity is exceedingly robust, a neural mechanism that we can readily 
believe has been present in vertebrates for over four hundred million years. 
The activity looks like "noise," serves (we believe) purposes met by 
unstructured or pseudorandom activity, and is turned on and off rapidly and 
reliably with respiration in a controlled manner. We agree with Babloyantz 
that to understand our target article properly readers will have to seek out 
and study "more technical publications" as cited here and elsewhere, and we 
hope that the paper will motivate some of them to do so. 

As to our view of the underlying physiology, Perkel questions why we 
propose that strengthening of excitatory synapses, but not of inhibitory ones, 
occurs with learning. We base our hypothesis on measurements of changes 
in the waveform of averaged evoked potentials when animals are trained to 
respond to electrical stimuli (Emery & Freeman 1969), and on 
determinations of the parameter changes that are necessary and sufficient to 



replicate these pattern changes in the solutions of differential equations that 
model the neural dynamics (Freeman 1979b). Interestingly, several 
theoretical advantages accrue from the experimental result that only the 
excitatory synapses change. One is the exquisite sensitivity of the olfactory 
system, arising from the form of the sigmoid curve under recurrent 
excitation. Another is the pattern stabilization and figure completion that 
results from strengthened excitatory connections (Babloyantz & Kaczmarek 
1981). Yet another is the exploitation of the Hebb (1949) rule, which is the 
basis for learning under reiforcement in our model; it is difficult to see how 
this rule might be implemented toward formation of a nerve–cell assembly if 
the synapses to be strengthened were inhibitory. The findings of Wilson, 
Sullivan, and Leon (1985) are fully consistent with our model; we have 
shown elsewhere (Gonzalez–Estrada & Freeman 1980) that observed 
suppression of mitral cell discharge can be the manifestation of profound 
excitatory action onto those same cells, given the proper system parameters. 
Here, indeed, is an opportunity for theory to come forward and explain the 
paradoxical and counterintuitive. 

Perkel also raises what he refers to as the "serious problem" of how the 
system can read out the identity of a familiar odorant when static and 
invariant representations do not exist in the bulb or elsewhere in the 
olfactory system as the basis for osmic memory. We have proposed 
elsewhere (Freeman & Skarda 1985) that the coherent, phase–locked 
activity generated by mitral cells, falling onto the prepyriform cortex after 
spatial and temporal reorganization in the olfactory tract, causes further 
bifurcation in that structure, initiating the process of response selection. But 
Perkel's question is important, because we do not yet know how that is done. 
For us, the really serious issue is not that the event is a transitory bundle of 
energy rather than a fixed state; it is that of developing a model based on 
distributed dynamic networks that can explain how a dynamic state (which 
need not have gone to completion) can lead to state changes in the rest of the 
nervous system leading to a response. One advantage of a connectionist 
model is that it doesn't require the fixed states that symbolic processing 
requires, and it allows us to conceive of new forms of interaction among 
subsystems like those found in the brain. 

Corner & Noest's chief challenge to our target article concerns the issue 
of projection of afferent activity from the receptors to the bulb. As they see 
it, each odorant stimulus activates a set of receptors that in turn activates its 
odorant–specific pattern in the bulb, with "magnification of preexisting 



differences in the spatial distribution of afferent signals. . . . What, then, 
needs to be 'learned' about such signals? . . . Nothing else, surely, than . . . 
behavioral significance. " Corner & Noest fail to grasp that the major task 
for learning to identify an odor is the formation of a nerve–cell assembly by 
the pair–wise strengthening of synapses between co–activated mitral cells 
(Hebb 1949). This task reflects the necessity for establishing an equivalence 
over all receptors (and the mitral cells to which they transmit) that are 
sensitive to a particular odor in an invariant manner. This is the key problem 
that Lashley (1942) posed in terms of stimulus equivalence. The formation 
of the nerve–cell assembly, in accordance with the postulate proposed by 
Hebb, takes place only under reinforcement and involves the release of 
norepinephrine into the bulb (Gray, Freeman & Skinner 1986). As we 
discussed in our target article, the EEG spatial patterns are as closely related 
statistically to the CR (conditional response) as to the CS (conditional 
stimulus). In answer to Corner & Noest's specific query, there were nine 
distinctive patterns for each of the four subjects that learned the 
discriminations, including discriminable spatial patterns that had the same 
odorant as CS but with different "meaning" (that is, that elicited a different 
CR) at different stages in the training program. 

Finally, Corner & Noest mention several issues that, although not 
relevant to the main points raised in our target article, are of special interest 
to physiologists, so we'll address them here. First, we think that the 
resemblance Corner & Noest point out between the classical brainstem 
mechanisms for cortical arousal, on the one hand, and the energizing effect 
of receptor input to the olfactory bulb, on the other, is not to be taken 
seriously. The nonspecific arousal process is mediated by ascending 
reticular axons operating on and through the thalamic reticular nuclei, 
whereas specific sensory activity is carried by distinctive sensory pathways 
through modality specific thalamic nuclei. The "dual" input to the bulb is 
carried by one and the same pathway; receptor axons carry action potentials 
that bear specific information by depolarizing the apical dendrites of 
selected mitral cells. Massive depolarization of the whole system brings 
about a bifurcation that leads to response selection. This is not the 
"preparation" of the bulb by the prior action of a parallel ascending pathway; 
it is a result of the concomitant induction of an instability of the system 
receiving the input. Moreover, the time and distance scales of these 
phenomena are significantly different. Reticular activation is broadcast to all 
parts of the nervous system by ascending and descending projections, 
irrespective of the modality of the arousing stimulus, and the aroused state 



tends to last for seconds to minutes with gradual abatement. The transition 
in the olfactory system is localized to the bulb and cortex, and it terminates 
during exhalation in a fraction of a second. Finally, the arousal response is 
centrifugally induced in the olfactory system as well as in other sensory 
cortices, whereas the formation of the burst is dependent on the centripetal 
sensory input and requires that the bulb already be in the aroused state. 

Second, we are in fact unable to explain alpha suppression in arousal or 
the enhancement of hippocampal theta in certain states involving orienting, 
but these phenomena lie outside the scope of our data and models. Our 
models do not generate activity in the alpha and high theta ranges (roughly 5 
to 15 Hz) without impermissible parameter settings, but neither does the 
olfactory system. 

Third, it is not the case, as stated by Corner & Noest, that gamma EEG 
waves "have gone undetected" in the neocortex. Systematic studies as well 
as anecdotal reports abound attesting to the presence of "40 Hz" activity, as 
it is commonly called, in many areas of the neocortex (e.g., Chatrian, 
Bickford & Uihlein 1960; Sheer 1976). In our opinion Corner & Noest 
underestimate the strength of the signal degradation imposed on neocortical 
EEG potentials by the spatial dispersion of the generating cells in directions 
perpendicular to the pia. The three cortical structures with the most striking 
alignment of their generating cells in this respect are the bulb, the 
prepyriform cortex, and the hippocampus, and these three have EEG 
amplitudes that easily exceed the amplitudes of neocortical EEGs by 10–to 
20–fold. Moreover, the relatively low amplitudes of that activity, especially 
at the scalp, are confounded by electromyographic (EMG) potentials that 
badly obscure gamma activity (40 to 90 Hz). Hence the gamma activity is 
known to exist, but it is poorly documented and has largely been ignored. 

Fourth, we agree with Corner & Noest that "the basic notion of widely 
synchronized neuronal carrier waves . . . is by no means excluded by 
differences among brain regions displaying the precise [frequency] 
characteristics of these (chaotic) waves," but we do not consider as "major" 
the challenge to account for the observed frequencies and amplitudes of 
olfactory EEG activity or to show their theoretical advantages. We have 
demonstrated repeatedly that the gamma range is the characteristic 
frequency band for neurons with passive membrane time constants on the 
order of 5 msec, and that the amplitudes are the result of the cytoarchitecture 
of the laminar structures. These are as they are because of the properties of 



the neurons that comprise the areas and generate the waves, not because 
these properties critically influence olfactory information processing. We 
suspect that neocortical cell assemblies tend much more strongly to chaotic 
activity, which renders them all the less accessible to our present 
understanding; but we do not consider it incumbent on us at this time to 
explain why this is so, or to show what advantages might accrue to vision or 
audition thereby. We have attempted to understand and explain paleocortical 
dynamics and to speculate a bit about the neocortex, not to propose a general 
theory of the EEG. 

 Mathematics: The uses and abuses of chaos. Chaos and its possible role 
in pattern recognition figured prominently in our target article. We 
suggested that in the brain chaos is necessary for learning new odors. Not all 
the commentators agreed with this, but as Garfinkel noted, the view that 
chaos plays a functional role is .1 something of an about face" for a 
phenomenon that has traditionally been viewed as highly undesirable. We 
are especially encouraged by the examples he cites that indicate chaos is not 
merely tolerated but essential for optimal performance of systems in search 
of their own goals or states of minimal energy. These uses for chaos 
translate readily into the maintenance of background activity while avoiding 
hypersynchrony, as in epilepsy; the flexibility and adaptiveness of behavior 
in the face of unpredictable environments; and the speed of operation of 
brains in entering and leaving states sequentially. We suggested that 
flexibility in responding to the changing olfactory environment is provided 
by the chaotic basal state, and that chaos doesn't merely provide noise in the 
manner of a Boltzmann machine to avoid local minima in a convergence 
process, but that it allows a relatively high energy state to be maintained 
between signal episodes, so that the neural system does not have to be 
dragged out of or dropped into a deep energy well with each bifurcation. It 
can flip lightly and quickly with each sample and flip back again. 
Furthermore, because the same mechanism generates both chaos and carrier, 
the "noise" is shut off when the "signal" goes on and vice versa. The signal 
is detected between the noise periods and not in them, so that the 
"signal/noise ratio" concept is not applicable here. 

Most of the objections to our use of chaos were based on proposed 
alternative models that don't require chaotic activity. The commentaries of 
Grossberg, Levine, and Rosenfeld, Touretzky & the Boltzmann Group 
belong to this category. By way of preface, however, we want to make our 
general position on chaos clear. We are the first to admit that we have no 



proof that chaos is essential to pattern recognition, whether biological or 
artificial, or that nonzero equilibria under noise might not serve as well. We 
believe, however, that we have shown that chaos exists in the olfactory 
system, and that our suggestions as to its roles are plausible and useful; 
certainly chaos should not be averaged out, discarded, or ignored. Although 
our understanding of chaos is rudimentary in comparison with our needs, the 
most effective way to proceed is by close cooperation between theorists and 
experimentalists, as exemplified by our exchanges with Garfinkel, 
especially in the analysis of spatially distributed systems of coupled 
oscillators. Now, on to some of the objections. 

In the past two decades Grossberg and his associates have consistently 
produced imaginative, detailed, yet comprehensive models expressing the 
formal bases of learned behavior generated by nervous systems. We note, 
however, that Grossberg's "Gedanken" experiments have been designed 
primarily to explain phenomena deriving from psychophysics; the 
relationship to neurophysiology occurs through his use of neural 
"metaphors," such as the cellular dipole representing local inhibitory 
feedback, the first–order decay process representing passive membrane, 
shunting inhibition, and the modifiable synapse. We view these terms as 
metaphorical because, in using them, Grossberg normalizes his state 
variables to dimensionlessness in time and space. In principle, of course, he 
could retain the conversion factors and return to the metric of the relevant 
nervous system, but in practice he does not because his avowed interest lies 
in general principles and not in specific examples. It is accordingly 
necessary for experimentalists to supply the conversion factors in order to 
test his theories, to the extent that they are intended to explain the brain. 

Grossberg's claim, based on his work on olfactory coding and its 
explanation by his adaptive resonance model (1976; 1981) and recently 
incorporated in his ART 1, is that chaos is unnecessary in his model. What 
are we to make of this claim in relation to our data? A comparison of ART I 
with our KII model shows that both consist of excitatory and inhibitory 
neurons formed into three or more serial layers with massively parallel 
axonal connections between them. The initial layer in both models is 
comprised of the sensory transducer neurons; Grossberg's layer S1 purports 
to embody our olfactory bulb, and his layer S2 the prepyriform cortex. His 
element for arousal from mismatch or attentional biasing may correspond 
topologically to the anterior olfactory nucleus, because this is a key site for 
centrifugal brainstem control of the bulb. Within each layer there is local 



negative (inhibitory) feedback, and there is extensive feedback between 
layers S1 and S2. Both systems have the ability to modify synaptic weights 
under reinforcement during learning. Both invoke the sigmoid curve as the 
static nonlinearity that dominates the dynamics. 

However, despite these superficial resemblances the differences between 
the two systems are so great that direct comparisons tend to be 
nonproductive and misleading. In ART 1 the most important modifiable 
synapses are at the input from layer S I to layer S2, equivalent to that 
between the lateral olfactory tract and the prepyriform pyramidal cell, and 
from S2 to S I equivalent to that between the medial olfactory tract and the 
granule cell (not the mitral cell, as Grossberg's model states). In ART I the 
input pattern is sustained and maintained for matching purposes at the input 
synapse to S1, equivalent to the primary olfactory nerve synapsing on mitral 
cells. In our KIII set the input is ignored after bifurcation. Moreover, this 
synapse is the site of dynamic range compression and signal normalization 
(presynaptic inhibition); none of these synapses change in relation to 
associative learning in KIII, though they are subject to post–tetanic and 
long–term potentiation. Shunting inhibition in ART 1 is multiplicative; 
recurrent inhibition in KIII is additive. In ART I local inhibitory feedback 
serves primarily for contrast enhancement. In the KIII set it serves primarily 
for generating the carrier frequency of bulbar output. In Grossberg dynamics, 
the state variables tend to fixed values (equilibrium attractors). Long–range 
excitatory connections are not prominent in ART 1; the distance of 
excitatory transmission is kept below that of inhibitory transmission. In the 
KIII set long–range excitatory connections in both the bulb and cortex are 
crucial for the formation of Hebb–type nerve–cell assemblies, because it is 
here that the synapses are modified in associative learning. In ART 1 the 
Hebb rule is applied to modification at the input level by virtue of feedback 
of spatially detailed and precisely timed information from S2 to S1. This 
cannot occur in the KIII set, because it models the feedback from the 
prepyriform cortex to the bulb, and this has such marked spatial divergence 
and temporal dispersion in both forward and feedback directions that no 
such transmission of detailed information is feasible. The pathways act as 
strong low–pass filters and remove it. 

From these and related anatomical and physiological measurements we 
conclude that function in the olfactory system cannot depend on precise 
timing and precise topographic mapping. Its algorithms must be reliable in 
the face of continual smoothing of activity by temporal dispersion under 



axonal transmission and by spatiotemporal integration in dendrites. This is 
one of several reasons that we insist repeatedly that behaviorally relevant 
neural information is to be found in the average activity of ensembles (as 
manifested in the EEG) and not in the activity of single neurons, once the 
first stage of carriage by sensory neurons has been passed. 

In addition, although Grossberg has often stated that his models hold good 
for both the single neuron and for the ensemble, we maintain that this cannot 
be so, because the static sigmoid nonlinearity that dominates the dynamics 
of both ART 1 and the KIII model holds only for the ensemble and not for 
the single neuron. He has also claimed that his results hold for both steady–
state and oscillatory solutions (equilibrium and limit–cycle attractors). In our 
view he has not adequately demonstrated the pattern–recognition dynamics 
of the oscillatory standing wave type of system to substantiate this claim. 

From these considerations it should be apparent that although we and 
Grossberg appear to be thinking and writing about the same nervous system, 
in actuality we are skew, almost entirely disjunct, because of the differences 
between our methods, values, and data bases. Of course, Grossberg's 
assertion would be valid if we had claimed that chaos was required for all 
pattern–recognition devices. Such a claim, however, would be foolish. We 
readily acknowledge the validity of his claims about equilibrium solutions 
for ART 1, but we want to point out that his dynamics have not yet been 
developed sufficiently to simulate the actual performance of our KIII model. 
Until he is able to expand his "minimal anatomies" to include and fully 
exploit modifiable excitatory cross–coupling within S1 and within S2, and 
to establish the proofs of performance of this system with periodic attractors, 
as he has for the fixed points of ART 1, we cannot concede that he has a 
counterexample. His model is not in the same domain. We conclude that 
Grossberg's cautionary note that chaos is inessential in ART 1 is important 
to consider, but that we must await further development of his ART models 
that explicitly exhibit the anatomy and dynamics we observe in the brain 
before we can be bound by his logic. And should his models prove to be less 
flexible than he might desire, we recommend a small dose of chaos. 

In a related vein, we accept Levine's point that some connectionist models 
have the capacity to respond to novel as well as to familiar input, so that 
input can be rapidly identified as novel and the learning process can begin. 
Such a process is embodied in Grossberg's ART I model and in work cited 
by Levine. Our difficulty, as discussed in our response to Grossberg above, 



is that our analysis indicates the olfactory system is not capable of 
performing the operations required for match and mismatch detection, at 
least in the manner carried out by ART 1. This is because the feedback 
pathway from the putative layer S2 (the prepyriform cortex) to layer S I (the 
olfactory bulb) is incapable of sustaining transmission of information with 
the requisite specificity of timing and spatial resolution. That is, we see no 
realistic way that fibers in the medial olfactory tract can return an organized 
pattern from the prepyriform cortex to the bulb and "match," "correlate," or 
"compare" it with a pattern in the bulb that is sustained by input from the 
receptors. Furthermore, our recordings tell us that after bifurcation the 
bulbar activity pattern reflects the generalization to a stereotypic form 
affected by a class of inputs based on experience rather than current 
individual inputs. We therefore contend that although Levine and Grossberg 
are on the track of devices that may far outperform the simpler connectionist 
models currently in vogue, these do not help to explain the dynamics of 
those parts of the nervous system with which we are familiar. If their models 
can be made to do what brains can do, or even to outperform them, then they 
need not trouble with chaos. If they cannot, then, like theorists of the past 
several decades, they might consider returning to the nervous system for 
some more insights and ideas. This is what von Neumann (1958) did in his 
quest for mastery of the newly conceived programmable digital computer. 

The other large–scale assault on our target article from connectionists 
came from Rosenfeld et al. who presented clear–cut arguments strongly 
defending their views and practices without effectively, we think, eroding 
our claims or responding to our findings or our speculations concerning the 
significance of their models for cognitive science. We recognize and have 
repeatedly stated that all models are abstractions, that the value of each 
model depends on how well the selection of detail to be included or 
excluded helps the modeler to attain a stated goal, and that judicious 
selection is more to be valued than mere fidelity to some "view" of how an 
aspect of the brain being modeled actually works. That "view" in itself being 
a hypothesis and therefore a model of sorts, we think that Rosenfeld et al. 
have invited us into a cul–de–sac with their allegation that we are confused. 
Furthermore, we believe that they have short–changed themselves in their 
efforts to "contribute to the emergence of a new taxonomy" of connectionist 
models by their apparent refusal to add some more cages to their zoo for 
models with dynamic attractors. To be sure, we have no evidence for the 
computational superiority of dynamic attractors in mathematical form, nor 
do we have bench–mark studies comparing the speed, accuracy, capacity, 



stability, and so on of two or more models having point versus chaotic 
attractors that perform some common task. We are not aware that 
benchmark studies exist as yet for comparative evaluation of different 
species of point models. But it is not true that we have no "evidence that 
could support [our] claim" for the value of dynamic attractors. The bulk of 
our target article presents evidence that the olfactory system works with 
dynamic attractors; we cited additional evidence that suggests the rest of the 
cerebrum may do so as well. This type of evidence is considered by some 
connectionists to be relevant to artificial intelligence (Al), considering that 
the performance of the brain still outclasses those of Al models. 

Rosenfeld et al. ask us, "which of the characteristics of chaos are 
necessary to the role it plays in generating new attractors, and which are 
irrelevant?" Our answer is that the following characteristics are necessary. 
We have stated that in order for the Hebb rule to operate, the neurons 
involved in the learning process must be active during the CS–induced 
activity under reinforcement of the UCS (unconditional stimulus), but that 
the activity must not conform to the attractor of a known odor. Hence, if the 
intensity of the activity must be high and its pattern should not conform to 
any previous spatial pattern of activity, then the pattern must appear to be 
random – i.e., chaotic –and must cover the entire bulb. On the other hand, 
the following aspects are irrelevant. The time series looks random. We find 
that its spectrum is broad in comparison to the spectrum of bursts with 
known odorants, and there is more low temporal frequency energy. 

Rosenfeld et al. write of a "forced reset action" existing in the dynamics 
of the bulb during exhalation, that is analogous to the action of turning their 
devices "off. " This is a significant mischaracterization of the dynamics of 
our model. During inhalation there is a forced choice leading to capture of 
the system at a "single (albeit dynamic) state that is computationally 
equivalent to the corner of a hypercube" (hypertorus?), which in our model 
is due to an obligatory side effect of the input surge; but during exhalation 
there is relaxation to the basal state, not forced reset. Furthermore, there is 
no reset to the "center of the hypercube, " even if the center could be 
computed within a reasonable time; instead, in our model the entire 
hypercube vanishes. It is re–created with each new inhalation causing 
bifurcation; this is the essence of self–organization. 

Rosenfeld et al. have likewise failed to grasp the significance of' our 
remarks on "pattern completion." There is a simple sense of "pattern 



completion" that can be said to take place: the conjectured extensive spread 
of activity through a nerve cell assembly (NCA) when any subset of its 
neurons is excited. There is another sense that is untenable: This is to 
suppose that the NCA is like the form of the letter "A" that is filled in by 
mutual excitation within the NCA following excitation of some fraction of 
its parts. The NCA is formed by repeated presentations of an odorant at 
sufficiently dilute concentration to prevent adaptation, and we suppose that 
the entirety is never activated on any one presentation, nor would that 
presentation be in any sense necessary, crucial, or identifiable even if it did 
occur. Furthermore, the successful convergence into the basin of a correct 
attractor, according to our model, depends on activating an NCA but does 
not specify that the activation need be complete, or even need 
asymptotically approach completion. The outcome may be a behavioral 
pattern, so that a stimulus–response configuration may be said to go to 
completion, but this does not require that an internal dynamic activity 
pattern go to "completion" in some kind of exemplary archetypal or 
normative state. The regularities in spatial pattern we have observed do 
represent possible outcomes, but cannot be shown, we believe, to be 
"completed" in the sense commonly used. We agree that our notion of 
"destabilization" is a metaphor until realized in software or hardware, and 
we intend to pursue it further; but we deny that generalization over 
equivalent stimuli, which is done by a basin and its attractor, is the same as 
pattern completion. 

Moreover, in response to Rosenfeld et al. we wish to point out that we 
cannot deal with the concept of "similarity" in our model for the same 
reason that we cannot handle "concentration." Both of these require serial 
processing of successive images or samples with comparison over time. We 
emphasize again that our model deals only with preattentive [or what Julesz 
(1984) terms "pop–out"] cognition. We do not have anything useful to say 
about attentive cognition, except that in our opinion it must involve 
proprioceptive and reafferent information so that successive sensory 
information samples can be combined with the information about what is 
done to get them. We also think it unlikely that each modality will be found 
to have such neural machinery separately, so that it should be sought after 
the combination of sensory input from all modalities into gestalts. From 
neurological considerations the most likely site of convergence is the 
entorhinal cortex (Lorente de Nó 1934), for which the hippocampus may 
serve as a stack register for temporal integration of serial gestalts. Much 
work needs to be done on multiple coexisting NCAs, but not in the context 



chosen by Rosenfeld et al. or at least not in neurobiological studies. As a 
postscript, we share their aversion to blind simulation of neural circuitry in 
the absence of any analytic handle on it, which is our reason for having 
made such a heavy investment in linear analysis of neural dynamics 
(Freeman 1972; 1975; 1987b). We would also like to agree on "minimal 
assumptions" and "essential features," if only we knew them in advance. 

Finally, while we have been occupied with adding some neural–based 
variations to the kinds of models contained in the connectionist zoo, and the 
connectionists were busy questioning our reasons for doing so, Thom was 
taking a shot at us all. We understand Thom's suspicion that at present 
"'connectionist models' ultimately mean very little," especially those 
deriving from the spinglass analogy. However, we do not understand what 
he means when he says that "a neural mass exhibits internal symmetry of a 
geometric type (translation, rotation, etc.)." We assume that the collection of 
local elements comprising a mutually excitatory set is interconnected by 
feedback connections between each pair of elements, and that the gain 
coefficients representing synaptic weights can take the form of a matrix. In 
the naïve state we assume that the weights are uniform or nearly so. With 
learning under the Hebb rule, in which the connections between pairs of 
neurons are more strongly weighted by co–activity, the symmetry of the 
matrix in our model is preserved, because each pair of neurons is 
reciprocally connected. The weights in both directions depend on the 
correlation of activity by the same pair. Symmetry does not hold for the 
negative feedback connections between excitatory and inhibitory cells, but 
in our model these weights are fixed and can be partialed out. Recent 
advances have shown that symmetry in this sense need not be maintained in 
connectionist models, and that with sufficient asymmetry limit–cycle 
attractors appear. Surely this is not surprising, but these more complicated 
systems are more difficult to comprehend. 

We are also puzzled by Thom's statement that "such chaotic systems have 
no equations." If by this he means that the EEG  cannot be simulated or 
fitted by a closed function such as cosine or Bessel, we surely agree. But we 
have shown that high–dimensional sets of coupled ordinary differential 
equations (ODEs) generate activity that is statistically indistinguishable 
from the EEG. Why is it permissible to call it chaos before we find the 
ODEs, but not after? We suspect that Thom's criticisms of terminology are 
directed more toward his fellow mathematicians than toward us. Certainly 
there arc degrees of unpredictability and sensitivity to initial conditions, 



ranging from a barely detectable wobble about a point or limit cycle 
trajectory to the sort of wildness that "cannot be explicitly described." Our 
ODEs simulate all of these gradations. 

We are willing to adopt whatever convention mathematicians eventually 
agree upon. Thom offers the choice between an oxymoron and a neologism 
(between "self–organizing process" and "chreod") to label the process of the 
emergence of order in a system without prior specification from the outside. 
What is important to us is not the name, which explains little, but the 
concept by which we conceive of a very large number of neurons that are 
coupled into a coherent mass, which, when highly interactive, has degrees of 
freedom far lower than the number of neurons, perhaps so few as can be 
counted on the fingers of one hand or two. The finding that ODEs modeled 
after the olfactory system can be made to generate olfactory seizure patterns 
as unpredictable as one finds in nature is for us a liberation from the tyranny 
of Fourier decomposition. We recognize the weakness of the measures of 
the invariants of chaos that mathematicians have thus far made available to 
us (see our reply to Babloyantz), but that problem is not germane to 
questions of terminology. it is obvious that the whole field of dynamical 
systems is uncomfortable with terminology in transition. Perhaps it is a 
measure of our immersion in reflex determinism that we have such difficulty 
finding words and concepts for these common phenomena. Thom 
compounds our discomfort by his final comment that "Pavlovian 
conditioning . . . could be explained as a purely dynamical effect" (if only he 
had stopped here) "of resonance"! The bulk of our target article, and for that 
matter of most of connectionism, is devoted to explaining the energy–
consuming dynamical character of brain function, but the term "resonance" 
– as in sympathetic vibrations or a Helmholtz resonator, the passive transfer 
or accumulation of energy at specific temporal frequencies, the ringing of 
tuned oscillators – is empty at best and misleading and obfuscating at worst. 
We urge that the language of basins and attractors be used; perhaps this will 
also have to be discarded at some future time when it has also been debased 
by the verbal inflation that comes with overuse, but surely by then we will 
have a new vocabulary to debate with and about. 

A final point needs to be made before we conclude. Thom is too generous 
in characterizing our experimental data as having "gaps"; at best, they 
constitute a small clearing in a large forest. The particular experiment he 
describes, in which one odorant serves as a CS for an appetitive UCS at 
another stage, has shown that the two EEG patterns differ. More to the point, 



when a rabbit is conditioned aversively to respond seriatim to odorant A, 
then B, C, and D, and is again conditioned to A, the spatial pattern changes 
with each new odorant, but it does not revert with reintroduction of odorant 
A to pattern A on the first conditioning. It changes to a new pattern on the 
repeat conditioning (Freeman & Schneider 1982). This result is contrary to 
expectations based on analogy with digital computer memory. It says 
something profound not so much about brains as about our preconceptions 
about the static nature of memory and our need to believe in mnemonic 
invariants. One might ask, how could the rabbit know that it was the same 
odorant in–both stages of conditioning if there was a different spatial pattern 
in the second stage? The answer is that we have no sure way of knowing 
whether the animal can retain such information and make such judgments 
over the weeks required to do the experiment, and even if it could, which 
seems highly unlikely, the background and context are changed, and these 
are influential in shaping the forms of associative memories. 

We do not commit Whitehead's (1960) "fallacy of misplaced 
concreteness." We do not claim an infinite storage capacity in the bulb for 
osmic memories; on the contrary, the psychophysical studies referred to in 
our target article show that the retentive capacity of the olfactory analyzer, if 
language is not used, is limited to about 16 odors at any given time. But the 
learning ability allows the repertoire to be modified and updated without 
increasing the total content. We have not yet attempted to address the 
questions of how new NCAs are overlaid or intertwined with preexisting 
ones, or what happens to the old ones, how they are deselected, and so forth. 
This is fertile ground for further studies in physiology, theory, and hardware 
modeling. 
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