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ABSTRACT 

Neuroscience involves hard work, but it is also a lot of fun, especially 
when it gets its hands on ideas that explain old facts in surprising new ways 
[1]. This is what has happened during the last decade. With the introduction 
of nonlinear dynamical systems theory – especially the theories of self–
organization and chaos – neuroscience has acquired powerful new concepts 
for analyzing and interpreting data. In our laboratory this has resulted in a 
radical transformation of our understanding of cortical functioning, but the 
application of nonlinear dynamical systems theory in neuroscience has 
further implications: it forces a revolution in the practice of neuroscience. In 
our research, the realization that self–organized and chaotic dynamics are 
essential to brain function has led us to reject the underlying explanatory 
framework that made reductionism the hallmark of scientific explanation. 
What is emerging today is not only a new view of brain function, but a new 
science of the brain. 

1. Alternative Approaches in Neuroscience 

To understand the revolutionary impact that the theories of self–
organization and chaos have had on our model of cortical functioning and on 
our understanding of neuroscientific explanation, we need to review briefly 
alternative approaches. The brain is a physiochemical system that operates 
simultaneously at many hierarchical levels. Neuroscientists seeking to 
discover the physiological basis of behavior have located it at various levels 
of this hierarchy. 
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Until recently, many if not most neuroscientists believed that the 
physiological basis of behavior was to be found at the level of individual 
neurons. This view, known as the neuron doctrine [2] or single unit 
approach to brain functioning, assumed that behavior could be explained in 
terms of the activity of individual cells triggered by a stimulus. Researchers, 
recording trains of action potentials from single cells, found that certain cells, 
"feature detectors" (2], were maximally driven by specific stimuli. Further 
research showed that these cells were organized in geometrical 
arrangements that account for their functional properties, e.g. the neuronal 
"map" of the retina in the visual cortex. The resulting task for single unit 
theorists has been to determine the patterns of forward connections among 
cortical neurons that can explain how complex features such as line 
segments or angles are synthesized from simple features such as on–center 
off–surround cells [3].  

 Other researchers believed that the explanation of behavior should be 
sought in phenomena at much lower levels of description. For example, 
researchers such as Hyden [4], Rall and Rinzel [5], and Lynch [6] suggested 
that the lasting changes responsible for learned recognition and memory 
occurred at the level of the neuronal organelle, such as the synapse or 
dendritic spine. Still other researchers have designated biochemical changes 
at the synapse as the biological basis of behavior, extending the search 
within the neuron on the premise that any permanent change that subserves 
learning may involve changes in the genome or a modification of the RNA 
in the Nissl substance (4,7). 

A different approach has recently been taken by researchers who 
postulate that the changes involved in learned behaviors, although based on 
or involving cellular and molecular modifications, are widely distributed 
spatially and should be understood first at the level of the neural network 
[8–14]. Neural network models identify the biological basis of behavior with 
a distributed process that takes place by gradually varying connection 
strengths among units comprising the network. Moreover, according to at 
least one school of neural network theorists, the biological basis of behavior 
is not only globally distributed in the network, it is a self–organized process 
that requires the use of the analytic tools of nonlinear dynamics, unlike the 
approaches mentioned above. Many exciting discoveries relating to the 
formation and functioning of neural networks have resulted from this 
approach in recent years, and it has encouraged a very fruitful interchange of 



ideas among neuroscientists, physicists, mathematicians, engineers, and 
cognitive scientists. 

Despite their obvious differences, these approaches have several features 
in common that set them apart from the view of cortical functioning 
developed in our laboratory [15]. First, they assume that the biological basis 
of behavior can be explained in terms of the properties of the system's parts, 
whether these be connection strengths among units in the network, 
individual neurons, or at the level of the genome. Even neural net models 
that recognize the role of self–organized dynamics focus exclusively on the 
mechanisms of synaptic change in network components to the exclusion of 
other possible mechanisms, mechanisms that do not involve synaptic or 
other changes at the level of the system's parts. 

Second, these approaches view neural functioning as a passive reaction to 
the stimulus. Just as feature detectors react to the stimulus that drives them 
maximally, so too the models developed by neural network researchers 
process whatever information is received by receptor level neurons. The 
resulting activity may or may not be understood as involving self–organized 
dynamics. None  of these models view brain functioning as active or 
selective. For these approaches, behavior is understood on the reflex model 
of physiological functioning as a reaction to stimulus input. 

Data from our laboratory tell us that in these and other respects, the 
alternative approaches do not adequately characterize neural functioning 
[16–18]. We have found that brain function cannot be explained in terms of 
features of neurons taken individually or as part of a local network, nor is it 
adequately characterized as a passive reaction to stimuli. And while neural 
network theorists use nonlinear dynamics in modeling their networks and 
recognize that self–organization plays a role in the brain, they have yet to 
realize the radical implications of the concept of self–organization both with 
respect to their explanatory models and for the practice of neuroscience. The 
following sections describe the neural dynamics of our model, the functions 
served by chaotic dynamics in the brain, and the implications of our findings 
for neuroscience. 

2. Chaotic Dynamics in Cooperative Neural Masses 

Faced, like other researchers, with the hierarchical structure of neural 
functioning, our approach has been to investigate neural dynamics at that 



level of organization in the hierarchy that corresponds in its time and 
distance scales to the coordinate systems of the behavior studied. In our 
research on pre–attentive perceptual recognition and memory, we know 
from measurement of response latency that it takes place within a few tenths 
of a second after sensory input is transmitted to the cortex. Lesion studies 
tell us that the neuronal correlate of this behavior is activity in large cortical 
areas, with a time scale of a fraction of a second, expressed in spatially 
extended patterns of activity. 

We have coined the term "cooperative neural mass" to express this level 
of neuronal functioning [19]. It is largely thanks to the analytical tools of 
nonlinear dynamics that we have been able to measure and interpret these 
spatially extended patterns of activity in the nervous system. Our approach 
has been to record and measure the neural activity patterns within the 
olfactory bulb before and again after a subject had learned to discriminate 
two or more sensory stimuli, and to identify precisely the differences in 
activity patterns that serve to distinguish and classify the neural events with 
respect to the discriminanda. 

In the experiments [20], thirsty rabbits were conditioned to lick in 
response to an odorant followed after two seconds by delivery of water, and 
just to sniff in response to an unreinforced odorant. Recordings were made 
of EEG (electroencephalogram) potentials using a chronically implanted 
8X8 array of electrodes (spacing: 0.5 mm) covering approximately 20% of 
the surface of the olfactory bulb. The typical pattern of the bulbar EEG was 
a slow wave, called a respiratory wave, with a burst of oscillation in the 
gamma range (35–90 Hz) common to all 64 channels. Analysis revealed that 
odor specific information existed in spatial patterns of amplitude of the 
oscillatory burst. Analysis of the EEG traces showed that in the background 
before conditioning, every trace had the same temporal waveform, but that 
the amplitude differed between channels forming a relatively constant 
spatial pattern that could be easily identified with a particular animal and 
that remained constant until odorant conditioning was undertaken. No 
changes in this background pattern occurred when unreinforced odorants 
were presented to the animal; however, new patterns did emerge with 
reinforced odorants. These patterns remained stable within and across 
sessions provided the stimulus–response contingencies were not changed. 
Of particular interest is the fact that these patterns were globally distributed 
in the bulb. The information that served to classify them correctly could not 
be localized to a particular subset of channels [22]. 



Our job was to produce a biologically sound model of the background 
state and of the emergence of globally distributed, odor specific spatial 
patterns. The resulting model is derived from studies of changes in the 
waveform of these evoked potentials, and on their replication by nonlinear 
differential equations simulating. the dynamics of the bulb, anterior 
olfactory nucleus and prepyriform cortex [23]. 

The data and the resulting model of olfactory functioning reveal that odor 
recognition and recall involve a hierarchy of self–organized neural processes 
that emerge one from the other in a series of state transitions. The hierarchy 
is rooted in what we have termed the background state. During late 
exhalation and early inhalation, the period of stimulus input via receptors, 
intrinsic interaction among bulbar neurons is low. During this stage, the 
activity of afferent neurons is imposed on bulbar neurons that accept this 
information and maintain it by local firing. Learning occurs when a 
reinforced odorant is presented to the animal over a series of trials, typically 
a few dozen sniffs. In the bulb, this involves first of all the formation of a 
nerve cell assembly (NCA). The model tells us that excitatory neurons, 
synaptically linked by bidirectional synapses, become coactivated in pairs 
upon presentation of a reinforced stimulus strengthening their joint synapses 
in accordance with Hebb's rule [9]. This leads to the formation of a NCA for 
a particular odorant that involves about 1% of neurons in the olfactory bulb. 
After the NCA has formed and so long as the reinforcement contingencies 
remain unchanged, excitation of any subset of neurons in the network by 
receptors sensitive to a particular odorant will activate the entire assembly. 
Our model tells us that this background state is a low level chaotic state in 
which is embedded the locally disseminated activity pattern of the NCA [24]. 

We have suggested that the NCA plays a crucial role at the point when 
receptor input pushes the bulb away from its rest state to a state change. We 
see its role as threefold: (1) to accomplish the difficult task of generalization 
over equivalent receptors, to amplify and stereotype the small input received 
on any given inhalation; (2) to produce the locally disseminated, low density 
activity pattern in the NCA upon interaction with a stimulus; and finally (3) 
to provide the mediating mechanism upon state change for the emergence of 
the globally distributed, odor specific activity pattern we associate with a 
particular odorant. Using the language of nonlinear dynamics we have 
hypothesized that the NCA determines the  



Our model explains the emergence of these globally distributed activity 
patterns in the following manner. Receptor input to the bulb does more than 
facilitate the formation of the NCA. During late inhalation, input to the bulb 
not only activates the subset of neurons involved in the NCA, it excites all 
bulbar neurons increasing their strength of interaction, priming the entire 
bulb for an explosive and sudden state change. Receptor input, thus, 
destabilizes the bulb; it augments interaction over the entire bulb by pushing 
bulbar neurons far from their initial low energy state. The result is a state 
change or bifurcation that leads to the emergence of a globally distributed, 
odor specific activity pattern. Upon bifurcation, the bulb converts to a 
transmitting mode in which bulbar neurons no longer respond to receptor 
input. In this state, information carried by each neuron is disseminated over 
the entire bulb and integrated by every neuron in the bulb. These patterns of 
globally distributed activity, one for each discriminated odor, have been 
mathematically expressed as a collection of chaotic attractors. These are the 
patterns that are sent out of the bulb to the cortex and that we suggest are 
behaviorally relevant for the correlations that are usually associated with 
learning and memory. Upon exhalation, the bulb returns to its low level 
chaotic background state in readiness for new interaction with the 
environment [25]. 

3. The New View of Perception 

What are the implications of this model for our understanding of the 
nature of perceptual processing in the brain? We believe that they axe far–
reaching and seriously undermine alternative models of cortical functioning 
[17,18]. Once it is admitted that perceptual processing involves self–
organized, internally generated neural processes, we believe that the 
classical model of physiological functioning must be jettisoned. The idea 
that perception can be explained in terms of feedforward processing, that it 
is caused by the stimulus or can be explained as the sum of responses to 
stimuli, is no longer acceptable [16]. Our model tells us that perceptual 
processing is not a passive process of reaction, like a reflex, in which 
whatever hits the receptors is registered inside the brain. Perception does not 
begin with causal impact on receptors; it begins within the organism with 
internally generated (self–organized) neural activity that, by re–afference, 
lays the ground for processing of future receptor input. In the absence of 
such activity, receptor stimulation does not lead to any observable changes 
in the cortex. It is the brain itself that creates the conditions for perceptual 
processing by generating activity patterns that determine what receptor 



activity will be accepted and processed. Perception is a self–organized 
dynamic process of interchange inaugurated by the brain in which the brain 
fails to respond to irrelevant input, opens itself to the input it accepts, 
reorganizes itself, and then reaches out to change its input. We suggest that 
the self–organized process that replaces environmental input with an 
internally generated, chaotic activity pattern is one that gives "biological 
meaning" to the stimulus. 

    Perception does not just "copy" objects, it creates their meaning for the organism: "(the) 
function of the organism in receiving stimuli is, so to speak, to 'conceive' a certain form 
of excitation" [26]. 

Our model tells us that the globally distributed activity patterns we record 
in the olfactory bulb are the neural basis of biological interaction: what 
happens in the brain is about interaction. Motivation involves the creation of 
a self–organized internal state that destabilizes the system so that it becomes 
ready to respond to a specific class of stimulus input within a given sensory 
modality. This class of stimuli may be quite general and may or may not 
have been experienced before, but once an exemplar is received it sets up 
conditions such that the system win generate new forms of interactive 
behavior to cope with the constraints imposed by new circumstances and 
previous experiences. Perception is an interactive process of destabilization 
and re–stabilization via self–organized dynamics [18]. Thus, we come to 
view the brain as the location where a self–organized process of patterning 
takes place, a process that reaches back toward the stimuli giving them form 
at the same time as it creates their biological meaning for the organism. 

4. The Contributions of Chaos 

It was once generally assumed that chaos was undesirable, that it occurred 
in brains subject to pathological malfunction, and that 'normal' physiological 
functioning resulted from dynamic processes that could be modeled as 
periodic. Our data suggest the opposite view: deterministic chaos is essential 
to normal brain functioning at many levels of activity. What we previously 
dismissed as "noise" in the system, something to be eliminated with filters 
when recording, something that the brain seemed to be fighting an 
impossible battle with in information processing, now appears to be the 
behaviorally relevant signal [17, 23]. 

Having discovered that chaotic activity is ubiquitous in neural functioning, 
we have asked ourselves: what is it doing? What advantages does chaotic 



activity confer on brains interacting with their environment? In other words, 
why chaos? What can it do that other forms of dynamic activity cannot? 

We have postulated several important benefits of chaotic activity [17]. 
One class of benefits concerns the system's biological functioning. It is a 
fact about brains that their neurons must be exercised in order to assure their 
proper functioning or they die. We have suggested that the chaotic basal 
activity of the background state provides a suitable biological mechanism 
for this; moreover, one that is reliable because it is independent of stimulus 
input. The brain is built to ensure its own steady and controllable source of 
noise that is quite stable, but not absolutely so. We have also suggested that 
chaotic activity enables the rapid state transitions essential for information 
processing. Without this ability, the brain could not quickly concern itself 
with a new task. Thus, we can thank chaos for the rapid transitions between 
perceptual states. Without it, perception would be agonizingly slow. We 
have also suggested that chaos is the mechanism whereby potentially fatal, 
and hence undesirable, periodic cortical behaviors are desynchronized: "(if) 
one wanted to desynchronize a process, the availability of a chaotic attractor 
would offer an opportunity to do it by a low–dimensional control" [27]. 

A second class of contributions concerns the ability of brains to generate 
information. Chaos has a role to play that sets brains apart from all other 
information processing systems. Chaos is not just an inevitable consequence 
of a highly interconnected complex system, it is essential for the creation of 
information. The brain, unlike machine systems, is selective, i.e., it does not 
process whatever information is received at the receptor level. As we have 
seen in the olfactory system, unreinforced odorants do not cause neural 
activity in the bulb: receptor level activity only leads to the formation of a 
NCA and bifurcation to the global activity pattern when the stimuli are 
reinforced and the animal is "motivated". This selection of relevant 
information is not imposed on the system from the outside, as is the case in 
machine systems which use periodic or steady state dynamics and require 
filters designed by their creator to define in advance what is signal and what 
is noise. Brains have to accomplish this task themselves in the face of 
infinite environmental complexity. 

Our model suggests that selection results from chaotic bifurcation. As we 
have described, a self–organized chaotic generator responds to 
environmental input by replacing it with an internally generated chaotic 
activity pattern. These self–organized chaotic activity patterns are 



transmitted further into the brain and provide the basis for future selectivity 
by (1) causing changes that mediate motivation, reinforcement and learning, 
and (2) modifying receptor input by causing direct environmental 
manipulation by the organism or by changing receptor positioning with 
respect to the world. The brain determines which input it will admit and 
what spatiotemporal form the resulting neural activity will assume. We 
suggest, therefore, that chaos is essential for input selection, processing and 
the creation of information in the brain. 

The interplay of chaotic dynamics among neural subsystems allows the 
brain to do what no man–made system has yet remotely approximated. It is 
this hierarchically arranged interplay of internally generated, chaotic 
dynamic activity that puts the neural information processing system in a 
class by itself. 

5. Neuroscience in Transition 

As mentioned earlier the practice of neuroscience, not only its content, 
must undergo a profound transformation as a result of the introduction of the 
analytical tools of nonlinear dynamics. Before concluding, let us take a 
closer look at several aspects of this transformation. 

Our data and the resulting model tell us that brains use chaotic dynamics. 
This finding has implications with respect to the methods of data analysis 
used in neuroscience. In the past, when the accepted view of neural 
functioning assume that the behaviorally significant neural events could be 
understood as periodic or steady state phenomena, researchers relied heavily 
on Fourier analyses, Wiene and Kalman filters, and autoregressive analyses 
when modeling and analyzing their data. But once the essential nonlinearity 
and chaotic character of neural activity is accepted, these analytical methods 
are no longer adequate. Researchers must adopt new methods, such as 
reconstructing attractors, in order to understand system dynamics that cannot 
be accessed by previous methods of analysis. 

Second, recognition of the essential role of self–organization in brain 
dynamics brings with it the need to adopt an explanatory framework that is 
alien to that traditionally used in science [16]. Self–organizing phenomena, 
such as fluid dynamics and embryonic development, traditionally resisted 
attempts to explain them in reductionistic terms, i.e., to explain system 
properties, like turbulence, in terms of the properties of parts of the system. 



It was assumed that the elements of explanation must mirror the 
compositional structure of the system. Reductionism could not accept that 
phenomena are simultaneously individual and part Of a greater whole; it 
claimed that ideally explanations of higher order phenomena would be 
collapsed into lower order ones and that lower order phenomena were the 
ultimate explanatory elements, the "causes" that science sought to isolate. 
Yet the breakthrough of nonlinear dynamics has shown us that explanations 
of self–organizing phenomena can only be given in terms of the qualitative 
forms of behavior of the system as a whole, i.e., in terms of system 
properties that resist analysis in terms of the properties of the parts, whether 
they be individual neurons or discrete input to the system. This implies that 
in explanations of self–organizing brain dynamics, there necessarily will be 
relative independence from the nature and properties of the substrate; hence 
micro–reduction, the aim of traditional explanations, does not work [28]. 

The observation that brains employ not only self–organization but chaotic 
dynamics to produce behavior places yet another nail into the coffin of 
reductionism. Chaotic phenomena preclude long–term predictions. It may 
seem paradoxical that a deterministic phenomenon is inherently 
unpredictable, but in systems that exhibit chaotic behavior, small 
uncertainties are amplified over time by the nonlinear interaction of a few 
elements. The upshot is that behavior that is predictable in the short run 
becomes intrinsically unpredictable in the long term [29]. As a result, 
physiologists cannot make strict causal inferences from the level of 
individual neurons to that of neural mass actions, nor from the level of 
receptor activity to internal dynamics. The causal connection between past 
and future is cut. 

One final point: The rejection of the reductionistic explanatory paradigm 
also has implications for our understanding of the relationship among 
neuroscientific research undertaken at different levels of description. Our 
model suggests that information processing subserving learning and memory 
involves single units, cell assemblies and mass action among large 
populations located in neural subsystems. With respect to experimental 
approaches, this implies that various levels of research will be required to 
give a complete explanation of the biological basis of learning and memory. 
Biochemical or single unit studies cannot explain or address the coordinated 
and distributed changes in large populations of neurons or in the NCA, and 
EEG studies of global activity patterns will not explain the synaptic changes 
leading to the formation of the NCA. An adequate understanding of 



phenomena at a particular level is only obtainable given the methods and 
concepts proper to that level, e.g. certain aspects of an action potential are 
only understandable in physiological but not biochemical terms. 

However, a clear explanatory hierarchy does exist in neuroscience. For 
example, while it is true that all behaviors can be mapped onto biochemical 
and physiological changes, not all such mappings will be useful or even 
relevant as far as an explanation is concerned: not all biochemistry maps 
onto behaviors of the individual organism [30]. Thus, we can ascribe an 
order to our investigations, but it is essential not to fall into the 
reductionistic interpretation of it outlined above. Because a level is lower in 
the explanatory hierarchy does not mean that it "causes" the higher order 
phenomena. The explanatory hierarchy reflects, in part, the relative 
independence of system properties from lower order phenomena, such as the 
emergence of global activity patterns that do not themselves involve further 
synaptic changes like those required at a lower level for the formation of the 
NCA. Thus, when researchers study a learned behavior such as odor 
recognition, biochemists, physiologists and cognitive scientists all study the 
same phenomenon, but each studies it at a different level of description. It is 
a mischaracterization to understand this hierarchy in causal terms. Contrary 
to popular opinion, feature detectors do not 'cause' perception of objects any 
more than neurotransmitter imbalance 'causes' mental illness. These forms 
of causal thinking rely on a reductionistic understanding of scientific 
explanation that is no longer tenable. 

6. From Biophilosophy to a New Neuroscience 

Nearly half a century ago, the biophilosopher Merleau–Ponty [31] 
proposed an alternative explanatory framework for physiology that was truly 
revolutionary; so revolutionary, in fact, that fifty years later it stands head 
and shoulders above contemporary work in the field of "neurophilosophy" 
[321. After examining the neuroscientific research of his day, Merleau–
Ponty concluded that physiologists had systematically misrepresented brain 
function because they were wedded to an explanatory framework that 
distorted their findings. He argued for a new view of cortical functioning. 
He claimed that the merely transformational and reactive processes that had 
been isolated by researchers in the artificial setting of the laboratory, in no 
way proved that such processes operated in the intact, freely behaving 
animal. This passive, reflex–based view of physiological functioning was, 
he claimed, an illusion created by physiologists who tried to understand the 



brain as a mechanical device. He proposed that brain function should be 
understood instead as basically creative and selective, and suggested that 
behavior was inaugurated within the organism rather than by the stimulus. 
He also argued against reductionistic explanations of neural functioning that 
reduced system properties to the sum of the properties of its parts, and that 
understood the components as the underlying causes of the behavior. He 
suggested that there existed internally generated, global states of cortical 
activity that could not be explained in reductionistic terms. He referred to 
these states as 'holistic'; and while his conceptual arguments for them were 
convincing, it was never clear what the physiological correlates of such 
states were or how they were internally generated. Revolutionary as 
Merleau–Ponty's theories about the brain and neuroscience were, they 
remained just theories, rejected by scientists and philosophers alike as 
"unscientific".  

 Today, thanks to the advent of nonlinear dynamical systems theory and its 
methods of analysis in neuroscience, we have the conceptual apparatus to 
grasp the truth of Merleau–Ponty's biophilosophy in terms of a new 
neuroscience. Today, we have at our disposal the tools to discover and 
explain the internally generated, self. organized, distributed phenomena that 
Merleau–Ponty could only hint at; and we have developed recording 
techniques to access these phenomena in intact animals. In addition, the 
theories of self–organization and chaos have given us a nonreductionistic 
explanatory framework for understanding brain function. Consequently, we 
can now explain why reductionistic thinking cannot adequately represent the 
physiological reality of cortical functioning. And finally, having rejected 
reductionism, we are in a position to reconceive the relationship among 
neuroscientific investigations undertaken at various levels of description. 
Thus, a revolution is taking place in neuroscience today, a revolution that, as 
Merleau–Ponty suggested half a century ago, promises to completely 
transform our understanding of brain function and the structure of scientific 
explanations. 
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